期刊文献+

基于视觉信息的PCNN参数自适应设定及模型改进 被引量:7

Adaptive Parameters Settings Method of PCNN Based on Visual Information and its Modified Model
下载PDF
导出
摘要 脉冲耦合神经网络(PCNN)参数决定该模型在数字图像处理领域的应用。现阶段网络参数自适应设定是依据图像统计信息或网络自身结构。基于此,提出基于生物视觉信息的PCNN参数自适应设置方法及模型改进。该方法通过对生物视觉感知理论与PCNN网络性质的分析,揭示了视觉感知理论与PCNN网络参数M、W和β的同源性,给出依据视觉感知模型自适应设定PCNN网络参数W、M和β的方法,并设计出具有生物视觉特征的PCNN改进模型。实验验证了该模型的几何不变性,在基于内容的图像检索领域取得了良好效果。 The parameters of pulse dual neural network (PCNN) determine the application of the model in the field of digital image processing. But adaptive settings of network parameters are based on the information of image statistics or network structure. Based on this, the adaptive parameters settings method of PCNN based on visual information was proposed and model was improved. By analyzing the nature of the biological visual perception theory and PCNN net- work, the method reveals the homology of the theory of visual perception and PCNN network parameters M,W and/~ The M,W and/? of adaptive parameter setting method were given on the basis of visual perception model. The PCNN improvement model of Biological visual features was designed. The experiments verify the geometric invarianee of the model. And it is proved that the model achieves good results at the field of Content-based image retrieval.
作者 赵彦明
出处 《计算机科学》 CSCD 北大核心 2013年第6期291-294,共4页 Computer Science
基金 河北省教育科学“十二五”规划项目(11100053) 河北省高等学校科学研究项目(Z2012127)资助
关键词 脉冲耦合神经网络 参数自适应设定 视觉感知理论 几何不变性 Pulse dual neural network, Parameters adaptive settings, Visual perception theory, Geometric invarianee
  • 相关文献

参考文献17

二级参考文献96

共引文献206

同被引文献66

  • 1张彦梅,于敬波.基于Zoom-FFT变换域的坦克被动式毫米波探测识别方法[J].南京理工大学学报,2007,31(3):346-349. 被引量:5
  • 2Lin C H, Chen R T, Chan Y K. A smart content-based image retrieval system based on color and texture feature[J]. Image and Vision Computing, 2009, 27(6): 658-665.
  • 3Mussarat Y, Muhammad S, Sajjad M, et al. Content based im- age retrieval using combined features of shape, color and rele- vance feedback[J]. KSII Transactions on Interact and Informa- tion Systems, 2013, 7(12): 3149-3165.
  • 4Johnson J L. Pulse-coupled neural nets: translation, rotation, scale, distortion and intensity signal invariance for images[J]. Applied Optics, 1994, 33(26): 6239-6253.
  • 5Oppenheim A V, Lim J S. The importance of phase in signals [J]. Proceedings of the IEEE, 1981, 69(5): 529-541.
  • 6Morrone M C, Burr D C. Feature detection in human vision: a phase-dependent energy model[J]. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1988, 235(1280): 221-245.
  • 7Pan W T. A new fruit fly optimization algorithm: taking the fi- nancial distress model as an example[J]. Knowledge-Based Systems, 2012, 26:69-74.
  • 8Hubel D H, Wiesel T N. Receptive fields and functional architecture of monkey striate cortex [ J 1. The Journal of physiology, 1968,195 ( 1 ) : 215 -243.
  • 9David J Field. Relations between the statistics of natural images and the response properties of cortical cells[ J]. Journal of Optical Society of A- merica, 1987,4(12) :2379 -2394.
  • 10Daugman J G. Entropy reduction and decorrelation in visual coding by oriented neural receptive fields [ J ]. Biomedical Engineering, IEEE Transactions on, 1989,36 ( 1 ) : 107 - 114.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部