摘要
基于人工神经网络方法 ,根据云峰大坝坝顶水平位移观测资料识别大坝混凝土和岩石基础的弹性模量 .采用修正的BP学习算法 ,并通过对迭代步长的优化计算及对观测数据的归一化处理 ,提高了参数识别的速度和精度 .云峰大坝的工程实际应用表明 ,用神经网络方法识别材料参数具有识别精度高和收敛速度快等特性 ,拟合误差小于 0 .15mm .
Based upon the artificial neural networks ,the elastic moduli of the concrete dam and the rock foundation are identified according to the horizontal displacements of the concrete dam in the Yunfeng projects. The precision of the estimated parameters and convergence are enhanced by the optimum of the iteration step size and handling in advance for the observed data. The practical application to the concrete dam in the Yunfeng projects indicates that the parameter identification algorithm proposed by this paper possesses higher identification accuracy, faster convergence, and the fitting error is less than 0.15 mm.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
2000年第5期531-535,共5页
Journal of Dalian University of Technology
基金
国家自然科学基金!资助项目 ( 5 97790 0 1)
工业装备结构分析国家重点实验室开放基金!资助项目 (GZ990 8)
关键词
混凝土坝
参数识别
人工神经网络
concrete dam
parametric recognition/artificial neural networks