期刊文献+

茶树花青素还原酶的酶学特性研究 被引量:4

Research on Enzymatic Characteristics of Anthocyanin Reductase of Tea Plant [Camellia sinensis (L.) O. Kuntze]
下载PDF
导出
摘要 茶树花青素还原酶(CsANR)作为原花青素生物合成途径中的关键酶,催化花青素为相应的2,3-顺式-黄烷-3-醇。为了研究该酶的酶学特性,本文采用原核表达及钴离子亲和柱纯化技术,表达并纯化出目的蛋白;重点对CsANR1酶学特性进行研究分析。结果表明,CsANR1的最适反应温度为40℃,最适pH值为6.5;对底物矢车菊色素的亲和力高于飞燕草色素。Cu2+、Co2+、Fe2+、Mn2+、Zn2+和Hg2+等金属离子对酶有抑制作用,存放15d后酶活下降50%。 Anthocyanidin reductase (ANR) is a key enzyme in the biosynthetic pathway of proanthocyanidins(PAs), which catalyzes anthocyanidins into the corresponding 2, 3-cis-flavan-3-ols. For researching enzymatic characteristics of the enzyme, this study was carried out to express and purify the protein by prokaryotic expression and Cobalt ion affinity column purification. The optimal conditions of CsANR1 were observed at 40℃ and pH 6.5. The more substrate preference of CsANR1 was showed on cyanidin over delphinidin. Moreover, Cu^2+, Co^2+, Fe^2+, Mn^2+, Zn^2+ and Hg^2+inhibited the enzyme activity and the enzyme activity decreased 50% after storing 15 days.
出处 《茶叶科学》 CAS CSCD 北大核心 2013年第3期221-228,共8页 Journal of Tea Science
基金 国家自然科学基金(30972401 31170647 1170282 31000314) 安徽省自然科学基金(11040606M73) 安徽省高校自然科学基金(KJ2012A110)
关键词 茶树 花青素还原酶 原核表达 酶学特性 tea plant[Camellia sinensis (L.) O. Kuntze], anthocyanin reductase, prokaryotic expression, enzymaticcharacteristics
  • 相关文献

参考文献16

  • 1Mondal TK,Bhattacharya A,Laxmikumaran M,et al.Recent advances of tea(Camellia sinensis)biotechnology[J].Plant Cell Tissue Org,2004,758(76):195-254.
  • 2Lin YS,Tsai YJ,Tsay JS,et al.Factors affecting the levelsof tea polyphenols and caffeine in tea leaves[J].J AgricFood Chem,2003,51(7):1864-1873.
  • 3Pang Y,Peel GJ,Wright E,et al.Early steps inproanthocyanidin biosynthesis in the model legumeMedicago truncatula[J].Plant Physiol,2007,145(3):601-615.
  • 4Dixon RA,Xie DY,Sharma SB.Proanthocyanidins–a finalfrontier in flavonoid research[J].New Phytol,2004,165(1):9-28.
  • 5Winkel BSJ.The biosynthesis of flavonoids[J].The scienceof flavonoids,2006:71-95.
  • 6Xie DY,Sharma SB,Paiva NL,et al.Role of anthocyanidinreductase,encoded by BANYULS in plant flavonoidbiosynthesis[J].Science,2003,299(5605):396-399.
  • 7Tanner GJ,Francki KT,Abrahams S,et al.Proanthocyanidinbiosynthesis in plants[J].J Biol Chem,2003,278(34):31647-31656.
  • 8Saito K,Kobayashi M,Gong Z,et al.Direct evidence foranthocyanidin synthase as a 2‐oxoglutarate‐dependentoxygenase:molecular cloning and functional expression ofcDNA from a red forma ofPerilla frutescens[J].Plant J,2002,17(2):181-189.
  • 9Punyasiri PA,Abeysinghe IS,Kumar V,et al.Flavonoidbiosynthesis in the tea plant Camellia sinensis:properties ofenzymes of the prominent epicatechin and catechinpathways[J].Arch Biochem Biophys,2004,431(1):22-30.
  • 10张宪林,高丽萍,夏涛,刘亚军,高可君.茶树新梢中非酯型儿茶素及其合成酶的变化规律[J].茶叶科学,2009,29(5):365-371. 被引量:14

二级参考文献19

  • 1Shirley BW. Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biology, and biotechnology [J]. Plant Physiol, 2001, 126: 485-493.
  • 2Stafford H A, Lester H H. The conversion of (L)- dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (L)-gallocatechin by reductase extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii[J]. Plant Physiol, 1985, 78: 791-794.
  • 3Punyasiri PAN, Abeysinghe ISB, Kumar V. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophy, 2004, 431: 22-30.
  • 4Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299: 396-399.
  • 5Xie DY, Jackson LA, Cooper JD, et al. Paiva NLMolecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant physiol,2004, 134:979-994.
  • 6Xie DY, Sharma SB, Dixon RA. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana[J]. Arch Biochem. Biophys, 2004, 422: 91-102.
  • 7Hayashi M, Takahashi H, Tamura K, et al. Enhanced dihydroflavonoi-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice[J]. PNAS, 2005, 102: 7020-7025.
  • 8Mamati G. E, Liang Y, Lu J. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols[J]. J Sci Food Agric, 2006, 86: 459-464.
  • 9Li H H, Flachowsky H, Fischer TC, et al. Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.) [J]. Planta, 2007, 226: 1243-1254.
  • 10Bogs J, Downey M O, Harvey J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology, 2005, 139: 652-663.

共引文献19

同被引文献26

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部