期刊文献+

基于符号映射分析的CO-OFDM系统信道估计研究 被引量:1

Channel estimation based on analysis of symbol mapping for CO-OFDM system
原文传递
导出
摘要 针对相干光正交频分复用(CO-OFDM)系统中光纤信道快变对系统可靠性和有效性的降低,设计了一种符号映射分析(ASM,analysis of symbols mapping)算法,通过对接收到的OFDM符号星座图进行分析,不断地对由信道估计得到的传递函数进行修正,在不需要大量导频的情况下能快速跟踪信道的变化。仿真结果表明:在40Gb/s的快变光纤信道CO-OFDM系统中,信噪比(SNR)为10dB,在误码率(BER)为10-3时ASM算法比常规的迫零估计(ZFE,zero forcing estima-tion)算法需要的导频间隔减小了1/2;在导频间隔为10、BER为10-3时,ASM算法比常规的ZFE算法有约3.5dB的SNR改善。 To reduce the influence of fast-varying fiber channel on reliability and validity of coherent optical orthogonal frequency division multiplexing (CO-OFDM) system, we present a new channel estimation method based on analysis of symbols mapping (ASM) applied to this fast-varying fiber channel. This method analyzes the constellation diagram of the received OFDM symbol, and then the channel's transfer function is modified constantly. That is to say this method can fast track the change of fast-varying fiber channel,and at the same time, this way doesnr t need a large number of pilots for channel estimation. Through simulation, we can show that in 40 Gbit/s fast-varying fiber channel CO-OFDM system, while the signal-to-noise ratio (SNR) is 10 dB and systemrs bit error rate (BER) is 10^-3 ,the pilot interval of ASM algorithm is reduced half compared with the conventional zero forcing estimation (ZFE) algorithm. While the pilot interval is 10 (every ten OFDM symbols inset one pilot) and system's BER is 10^-3 , compared with conventional ZFE algorithm, ASM algorithm has 3.5 dB SNR improvement.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第6期1090-1098,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61077054 61177066)资助项目
关键词 相干光正交频分复用(CO—OFDM) 信道估计 符号映射 快变光纤信道 coherent optical orthogonal frequency division multiplexing (CO-OFDM) channel estimation symbol mapping fast-varying fiber channel
  • 相关文献

参考文献7

二级参考文献74

  • 1杜开祝,王大永,何嘉斌.10/100M自适应恒温光纤收发器[J].光电子技术与信息,2005,18(6):33-38. 被引量:4
  • 2BRODSKY M,MAGILL P D, FRIGO N J.Evidence for parametric dependence of PMD on temperature in installed 0.05 ps/km1/2 fiber[A].ECOC [C]. 2002.4:39-43.
  • 3COHEN L G, FLEMING J W. Effect of temperature on transmission in lightguide[J]. Bell System Tech, 1979,58(4):945-951.
  • 4SHIBATA N, SHIBATA S, EDAHIRO T. Refractive index dispersion of lightguide glasses at high temperature[J].Eletron Lett, 1981,17(8):310-311.
  • 5KIM K S, LINES M E. Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis[J].Appl Phys, 1993,73(5):2069-2074.
  • 6Winzer P J. Beyond 100 G Ethernet[J]. IEEE Communications Magazine, 2010,48(7) : 26-30.
  • 7Masataka Nakazawa, Kazuro Kikuchi, Tetsuya Miyazaki. et al. High spectral density optical communication technologies[M]. New York; Springer, 2010.
  • 8YANG Qi, TANG Yan, MA Yi-ran, et al. Experimental demonstration and numerical simulation of 107 Gb/s high spectral efficiency coherent optical OFDM[J]. Journal of Lightwave Technology, 2009,27(3) : 168-176.
  • 9Dimitrov Svilen, Sinanovic Sinan, Haas Harald. Clipping noise in oFDM-based optical wireless communication systems[J]. IEEE Transactions on Communications, 2012,60(4): 1072-1081.
  • 10YUE Guo-sen,WANG Xiao-dong. A hybrid PAPR reduction scheme for coded OFDM[J]. IEEE Transactions on Wireless Communications,2006,5(10) :2712-2722.

共引文献33

同被引文献14

  • 1Bryn J Dixon, Roger D Pollard, Stavros lezekiel. Orthogo- nal frequency-division multiplexing in wireless communi- cation systems with multimode fiber feeds [J]. IEEE Transactions on Microwave Theory and Techniques,2001,49(8):1404-1409.
  • 2Arthur James Lowery, Jean Armstrong. Orthogonal-frequ- ency-division multiplexing for dispersion compensation of long-haul optical systems [J]. Optics Express, 2006, 14 (6) :2079-2084.
  • 3van B Djordjevic,Bane Vasic. Orthogonal frequency divi- sion multiplexing for high-speed optical transmission[J] Optics Express, 2006,14(9) ; 3767-3775.
  • 4Shieh W, Athaudage C. Coherent optical orthogonal frequ- ency division multiplexing [J]. Electronics Letters, 2006, 42(10):587-589.
  • 5Roger Giddings. Real-time digital signal processing for optical OFDM-based future optical access networks[J] Journal of Lightwave Technology, 2014,32(4) : 553-570.
  • 6Xi Chen,AN Li,DI Che,et al. Block-wise phase switching for double-sideband direct detected optical OFDM signals [J]. Optic Express,2014,21(11) : 13436-13441.
  • 7LIU Jian-fei, LI Jie, ZENG Xiang-ye, et al. Scattered pilot- based channel estimation with joint noise reduction for PDM-CO-OFDM system [J]. Optik-lnternational Journa for Light and Electron Optics,2013,124(22) :5422-5426.
  • 8XU Yan-fei, QIAO Yao-jun, JI Yue-feng. An improved no- vel joint channel estimation algorithm for the 112 Gbps PDM-COOFDM system[J]. Optik-lnternational Journal for Light and Electron Optics,2012,123(21) : 1998-2001.
  • 9Daniel J F. Barros Joseph,Kahn M. Optimized dispersion compensation using orthogonal frequency-division multi- plexing[J]. Journal of Lightwave Technology, 2008, 26 (16) : 2889-2898.
  • 10Lynn E Nelson, Robert M Jopson, Herwig Kogelnik, et al Measurement of polarization mode dispersion vectors u- sing the polarization-dependent signal delay method[J] Optics Express,2000,6(8):158-167.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部