期刊文献+

云计算环境下的物流资源调度算法研究 被引量:6

Study on Algorithm for Logistics Resource Dispatching in Cloud-computation Environment
下载PDF
导出
摘要 针对系统处理大规模物流调度信息能力不足的情况,提出了一种基于云计算环境下的物流资源调度优化模型对问题进行求解。在云计算环境下处理订单信息、车辆调度信息,并针对所有订单生成最合理的配送方案,通过对物流主要资源配送车辆的调度研究,建立配送路径算法模型以及最小配送成本算法模型,作为物流资源调度方案的解决策略。通过仿真结果表明,该算法能有效处理大量的物流资源调度信息,同时缩短计算求解时间。 In this paper, we proposed an optimization model to solve the problem of the dispatching of logistics resources in cloudcomputation environment. More specifically, we proposed to process the order and vehicle dispatching information in cloud environment and in view of all the orders generate a most reasonable plan; and then through studying the major vehicles employed, establish the algorithm model for the distribution routing as well as minimum distribution cost. At the end, through a simulation example, we verified that such algorithm could greatly shorten computation time while effectively processin~ large ~uantitv of lo^stics resource disDatchinu information;
作者 李振汕
出处 《物流技术》 北大核心 2013年第5期339-341,386,共4页 Logistics Technology
基金 广西教育厅科研课题"基于资源共享的网络教学体系平台研究"(201106LX875)
关键词 云计算 优化算法 物流资源调度 cloud computation optimization algorithm logistics resource dispatching
  • 相关文献

参考文献2

二级参考文献17

  • 1张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 2潘达儒,袁艳波.一种基于AntNet改进的QoS路由算法[J].小型微型计算机系统,2006,27(7):1169-1174. 被引量:6
  • 3MC EVOY G V, SCHULZE B. Using clouds to address grid limitations[C]//MGC'08. Belgium: Leuven Press, 2008.
  • 4IAN F, YONG Z. IOAN R, et al. Cloud computing and grid computing 360 Degree compared[C]//Grid Computing Environments Workshop. [s.l.]: IEEE, 2008.
  • 5HUAN L, DAN O. Accenture technology labs gridBatch: Cloud computing for large-scale data-Intensive batch[C] //CCGRID 2008. Shanghai:[s. n. ], 2008.
  • 6Amazon web services (TM). Amazon Elastic Compute Cloud (Amazon EC2)[EB/OL]. [2008-10-24]. http: //aws. amazon.com/ec2. 2008.
  • 7Amazon web services (TM). Amazon Simple Storage Service ( Amazon S3 ) [ EB/OL].[ 2008-10-24]. http:// aws. amazon.com/s3.
  • 8YANG C H, DASDAN A, HSIAO R L, et al. Map-reduce-merge. Simplified relational data processing on large elusters[C]//International conference on management of data. CA, USA: ACM SIGMOD, 2007.
  • 9GHEMAWAT S, GOBLOFF H, LEUNG S T. The google file system[C]//19th ACM Symposiun on Operating System 2003. New York: Association for Computing Machinery, 2009.
  • 10L Lampot.Paxos made simple[J].ACM SIGACT News,2001,32(4):5l-58.

共引文献131

同被引文献32

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部