期刊文献+

浸烘与加载耦合作用下混凝土的损伤失效研究 被引量:1

Stress Corrosion of Concrete Exposed to Immersion-dry and Loading Conditions
下载PDF
导出
摘要 研究了水灰比分别为0.53、0.35和0.27的普通混凝土(OPC)、高性能混凝土(HPC)和高强混凝土(HSC)在盐湖卤水浸烘、浸烘+30%荷载和盐湖现场暴露环境下盐应力腐蚀行为。试验结果表明:在不同环境作用下,混凝土在应力腐蚀作用下的相对动弹性模量要经历强化和劣化2个发展阶段,强化和劣化阶段的时间与试验环境和混凝土类型密切相关。水灰比越大,劣化速率越大强化时间越短。浸烘循环+30%荷载作用显著加速了混凝土应力腐蚀破坏进程。OPC应力腐蚀的强化段在浸烘循环+30%荷载时间与长度暴露环境条件的相应时间长度分别压缩了67%。在浸烘+30%荷载循环作用下,在强化阶段HSC发生应力腐蚀的干湿循环次数分别比OPC和HPC延长了1.8倍,因此,在中国盐湖地区,HSC表现出更强的抗应力腐蚀能力。 The considered concretes include ordinary portland cement (OPC), High Strength Concrete (HSC) and High performance Concrete (HPC) with the water to binder 0. 53, 0. 35and 0. 27 under three different conditions. This study revealed that the relative dynamic elastic modulus of concrete went through of time strength of these water to binder, Immersing- en and deterioration stages subjected to stress corrosion under three conditions, the length stages are closely related with test environment and concrete type. With the increase of the ratio of deterioration was increased, and the length of strength stages was decreased. drying + 30% loading action significantly accelerated the process of stress corrosion damage Under the action of Immersing-drying + 30% load, strengthen section of the length of OPC shorter 67%, compared with the length of time at exposure salt lake. The effect of immersing and drying, HSC Immer- sing-drying cycles when the stress strength occurred were longer 1.8 times than the OPC and HPC. HSC showed more resistance to stress corrosion in the salt lake regions of china.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期40-44,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家"973"计划资助项目(2009CB623203) 国家自然科学基金资助项目(51178221)
关键词 浸烘循环 应力腐蚀 混凝土 相对动弹模量 immersing-drying cycle stress corrosion concrete relative dynamic elastic modulus
  • 相关文献

参考文献14

二级参考文献57

共引文献239

同被引文献14

  • 1陈文瑜,黄小清,汤立群.混凝土连续刚构箱梁桥的温度场分析[J].中山大学学报(自然科学版),2008,47(S2):114-116. 被引量:5
  • 2AHMARUZZAMAN M. A review on the utilization of fly ash [ J]. Progress in Energy and Combustion Science, 2010, 36( 1 ) 327 -363.
  • 3ONER A, AKYUZ S, YILDIZ R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete [ J ]. Cement Con- crete Research, 2005, 35 ( 12 ) : 1165 -1 171.
  • 4OBADA K, SHARFUDDIN M. Assessment of high vol- ume replacement fly ash concrete concept of performance index [ J ]. Construction and Building Materials,2013,39 : 71 -76.
  • 5YOSHITAKE I, ZHANG W, MIMURA Y et al. Uniaxial tensile strength and tensile Young's modulus of fly-ash concrete at early age[J]. Construction and Building Ma- terials, 2013, 40:514-521.
  • 6SAUL A. Principles underlying the steam curing of con- crete at atmospheric pressure [J]. Magazine of Concrete Research, 1951, 2(6) :127 - 140.
  • 7PLOWMAN J. Maturity and the strength of concrete[ J ]. Magazine of Concrete Research, 1956, 8 (22) : 13 -22.
  • 8HANSEN P F, PEDERSEN J. Maturity computer for controlled curing and hardening of concrete strength [J]. Nordic Concrete Federation, 1977, 1 (19) :21 - 25.
  • 9BERNHARDT C J. Hardening of concrete at different temperatures[ C]// RILEM Symposium on Winter Con- creting, Copenhagen, Danish, Institute for Building Re- search, Session B-II, 1956:10.
  • 10金贤玉,田野,金南国.混凝土早龄期性能与裂缝控制[J].建筑结构学报,2010,31(6):204-212. 被引量:39

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部