期刊文献+

分布参数柔性梁的建模与振动边界控制 被引量:2

Modeling and Boundary Vibration Control of a Distributed-Parameter Flexible Beam
下载PDF
导出
摘要 研究了一类具有未知扰动和变张力柔性梁的二维振动控制问题。柔性梁式结构属于典型的无穷维分布参数系统,其动力学模型由一组偏微分方程(PDEs)和一组用常微分方程(ODEs)混合构成。为了避免控制溢出和实现二维振动控制,基于柔性梁原始无穷维分布参数模型,结合边界控制技术和Lyapunov直接法,设计了纵向和横向二维PD(Proportional Derivative)控制器用以抑制柔性梁的振动,设计的PD控制器简单可行且独立于系统参数,因此具有较好的实时性和鲁棒性。其后利用经典的Lyapunov直接法对柔性梁系统的稳定性和一致有界性进行了证明。最后对所设计控制方法的有效性进行了仿真验证。 A boundary control in two-dimensional is proposed for a distributed-parameter flexible beam with unknown disturbance and varying tension to minimize the beam vibrations. Flexible beam is a typical infinite-dimensional distributed parameter systems, and its hybrid dynamic model is described in terms of partial differential equations (PDEs) and ordinary differential equations (ODEs). To avoid con- trol spillover and achieve vibration control in two-dimensional, the PD (Proportional Derivative) bound- ary controllers in longitudinal and lateral direction are designed respectively based on the original infinite- dimensional PDEs model and Lyapunov's direct method to reduce the flexible vibrations. With the proposed PD boundary control, the real-time and robustness of control system are ensured because the proposed controller is simple and independent of system parameters. The uniform boundedness and closed- looped stability can be achieved by Lyapunov's direct method. Simulation results illustrate the effectiveness of the proposed boundary control.
作者 邬依林 刘屿
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期55-62,共8页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(61203060) 广东省自然科学基金资助项目(S2011040005707 S2012010008462) 高等学校博士学科点专项科研基金资助项目(20120172120033)
关键词 柔性梁 边界控制 LYAPUNOV直接法 稳定性 flexible beam boundary control Lyapunov's direct method stability
  • 相关文献

参考文献15

  • 1谢卓伟,石明礼,王斌,邱志成.气动驱动的移动柔性臂振动控制[J].华南理工大学学报(自然科学版),2011,39(4):62-65. 被引量:4
  • 2马天兵,裘进浩,季宏丽,朱孔军.基于鲁棒模型参考控制器的智能结构振动主动控制研究[J].振动与冲击,2012,31(7):14-18. 被引量:7
  • 3BALAS M J. Feedback control of flexible systems [ J ]. IEEE Transactions on Automatic Control, 1978, 23 (4) : 673 - 679.
  • 4MEIROVITCH L, BARUH H. On the problem of observation spillover in self-adjoint distributed systems [ J ]. Journal of Optimization Theory and Applications, 1983, 39(2) : 269 -291.
  • 5BELISHEV M. Recent progress in the boundary control method [ J ]. Inverse Problems, 2007, 23 ( 5 ) : R1 - R64.
  • 6QUEIROZ M S, RAHN C D. Boundary control of vibration and noise in distributed parameter systems:An overview [ J]. Mechanical Systems and Signal Processing,2002,16 (1) :19 -38.
  • 7吴忻生,邓军.末端有未知扰动的分布参数柔性机械臂的鲁棒边界控制[J].控制理论与应用,2011,28(4):511-518. 被引量:15
  • 8LEE T H, GE S S, WANG Z. Adaptive robust controller design for multi-link flexible robots [ J ]. Mechatronics, 2001, 11(8): 951 -967.
  • 9SMYSHLYAEV A, CERPA E, KRSTIC M. Boundary stabilization of a 1-D wave equation with in-domain anti- dumping [ J ]. Journal of Control and Optimization, 2010, 48(6) : 4014 -4031.
  • 10MEURER T, KUGI A. Tracking control for boundary controlled parabolic PDEs with varying parameters:Combining backstepping and differential flatness [ J ]. Automatica, 2009, 45(5) : 1182 - 1194.

二级参考文献59

共引文献23

同被引文献28

  • 1张伟,陈立群.轴向运动弦线横向振动控制的Lyapunov方法[J].控制理论与应用,2006,23(4):531-535. 被引量:10
  • 2LOGAN J D. Applied mathematics [ M ]. New York: Wi- ley, 2006.
  • 3VANDEGRIFF M W, LEWIS F L, ZHU S Q. Flexible- link robot arm control by a feedback linearization/singular perturbation approach [ J 1. Journal of Robotic Systems, 1994, 11(7) : 591 -603.
  • 4BALAS M J. Feedback control of flexible systems [ J ]. IEEE Transactions on Automatic Control, 1978, 23 (4) : 673 - 679.
  • 5LIU Y, XU B S, WU Y L, et al. Boundary control of an axially moving belt [ C ] /J Chinese Control Conf. Xi'anChina, 2013 : 1228 - 1233.
  • 6KRSTIC M, SMYSHLYAEV A. Backstepping boundary controller and observer designs for the slender Timosh- enko beam [ C ]//Proc of IEEE Conference on Decision and Control. Seville : IEEE Press, 2005 : 1 - 8.
  • 7ENDO T, MATSUNO F, KAWASAKI H. Simple boundary cooperative control of two one-link flexible arms for grasping [ J ]. IEEE Transactions on Automatic Control, 2009, 54(10): 2470-2476.
  • 8ZHANG L J, LIU J K. Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model [ J ]. IET Control Theory and Applications, 2013, 7( 1 ): 43-51.
  • 9WU H, WANG J, LI H. Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems [J]. Automatica, 2012, 48(10): 2535-2543.
  • 10GUO B. Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients [ J ]. SIAM Journal on Control and Optimiza- tion, 2002, 40(6) : 1905 - 1923.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部