期刊文献+

Hausdorff空间中一类广义拟平衡问题解的存在性

Existence of Solutions of A Generalized Quasi-equilibrium Problems in Real Hausdorff Linear Topological Space
下载PDF
导出
摘要 文章引入了实Hausdorff线性拓扑空间中一类新的广义拟平衡问题,利用KKM定理,得到了这一类广义拟平衡问题几个解的存在定理。本文的工作改进和推广了近期的一些已知结果. In this paper, a new type of generalized quasi-equilibrium problems with set-valued mapping is introduced in real Hausdorff space. By using the KKM theorem, some existent theorems of the solutions of a generalized quasi-equilibrium problems are obtained. These results improve and generalize some recent known results.
出处 《乐山师范学院学报》 2013年第5期1-5,12,共6页 Journal of Leshan Normal University
基金 教育部科学技术重点项目(211163)
关键词 广义拟平衡问题 KKM映射 C-对角下凸 仿射 Generalized Quasi-equilibrium Problems KKM -mapping Diagonally Lower -convex Affine
  • 相关文献

参考文献11

  • 1T. T. T .Duong and N. X. Tan. On the existence of solutions to generalized quasi-equilibrium problems of tzpe Ⅱ and Related Problems. Acta Mathematica Vietnamica.2011,36: 231-248.
  • 2Q. H. Ansari. W. K. Chan and X. Q. Yang The system of generalized vector equilibrium problems with applications.J.Optim,2004,29:45-57.
  • 3S. J. Li and J. Zeng. Existence of solutions for generalized vector quasi-equilibrium problems. Optim.Lett, 2008,2(3 ):341 - 349 .
  • 4X. B. Li and S. J. Li. Existence of solutions for generalized vector quasi-equilibrium problems. Optim. Lett, 2010,4( 1 ): 17 - 28.
  • 5J. Xie and Z. Q. He. Gap Functions and Existence of Solutions to System of Generalized Vector Mixed Quasi-Equilibrium Problems[J].Journal of Mathmatical physics, 2011,31 (5) : 1 - 10.
  • 6J. W. Peng and S. Y. Wu. The generalized Tzkhonov well-posedness for szstem of vector quasi-equilibrium problems.Optim.Lett.2010,4(4) : 501 - 512.
  • 7T. T. T. Duong and N. X. Tan. On the existence of generalized quasi-equilibrium problems. J Glob Optim,2012,52:711-728.
  • 8D. T. Lue. An abstract problem in variational analzsis. J. Optim.Theorz Appl.138(2008),65 - 76.
  • 9S. J. Li, K. L. Teo, X. Q. Yang and S. Y. Wu. Gap Functions and Existence of Solutions to Generalized Vector Quasi-Equilibrium Problems. J.Optim., 2006,34: 427-440.
  • 10J. W. Peng, H. W. J. Lee and X. M. Yang. On System of Generalized Vector Quasi-Equilibrium Problems with Set-Valued Maps.J.Optim, 2006,36:139-158.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部