期刊文献+

适合于分布式并行计算的一种并行广义乘积型双共轭残差方法(英文) 被引量:1

Parallel version of generalized product-type bi-conjugate residual method suitable for distributed parallel computing
下载PDF
导出
摘要 针对求解大型稀疏非对称线性方程组,提出适合于分布式并行环境的一种并行广义乘积型双共轭残差(GPBiCR)方法(简记为PGPBiCR方法).通过重构GPBiCR方法,新方法将原方法中的三个全局同步点降低到了一个,且内积所需的通讯时间可与向量校正的计算时间有效地重叠.代价仅是稍微增加了一些计算量,而相比于全局通讯时间的降低,这是可以忽略不计的.性能和等效率分析表明,PGPBiCR方法比GPBiCR方法具有更好的并行性和可扩展性,其中可扩展性可改进3倍,而并行通讯性能可改进66.7%.数值试验得到了与理论分析相吻合的结果. A parallel version of generalized product-type bi-conjugate residual (GPBiCR) method (PGPBiCR method, in brief) for solving large sparse linear systems with unsymmetrical coefficient matrices is proposed for distributed parallel environments. The method reduces three global synchronization points to one by reconstructing the GPBiCR method, and the communication time required for the inner product can be efficiently overlapped with the computation time of the vector updates. The cost is only slightly increased count of computation, which can be ignored, compared with the reduction of the communication time. Performance and isoefficiency analysis show that the PGPBiCR method has better parallelism and scalability than the GPBiCR method. Numerical experiments show that the scalability can be improved by a factor 3 and the improvement in parallel communication performance approaches 66.7%.
出处 《应用数学与计算数学学报》 2013年第2期246-259,共14页 Communication on Applied Mathematics and Computation
基金 supported by the National Natural Science Foundation of China(61170309 61202098 91130024) the Key Project of Development Foundation of Science and Technology of CAEP(2011A0202012: 2012A0202008) the Foundation of National Key Laboratory of Computational Physics
关键词 稀疏非对称线性方程组 并行广义乘积型双共轭残差方法 KRYLOV子空间方法 全局通讯 分布式并行环境 sparse unsymmetrical linear systems, parallel version of generalized product-type bi-conjugate residual (PGPBiCR) method, Krylov subspace method, global communication, distributed parallel environment
  • 相关文献

参考文献23

  • 1Saad Y. Iterative Methods for Sparse Linear Systems [M]. Boston: PWS Publishing Company, 1996.
  • 2Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems [J]. J Res Nat Bureau Standards, 1952, 49: 409-436.
  • 3Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving nonsymmet- ric linear systems [J]. SIAM J Sci Star Comput, 1986, 7: 856-869.
  • 4Lanczos C. Solution of systems of linear equations by minimized iterations [J]. J Res Nat Bureau Standards, 1952, 49: 33-53.
  • 5Van der Vorst H A. Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems [J]. SIAM J Sci Star Comput, 1992, 13: 631-644.
  • 6Zhang S L. GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsym- metric linear systems [J]. SIAM J Sci Comput, 1997, 18: 537-551.
  • 7Kuniyoshi A, Sogabe T, Fjino S L, Zhang S L. A product-type Krylov subspace method based on conjugate residual method for nonsymmetric coefficient matrices [J]. IPSJ Trans Adv Comput Sys, 2007, 48(SIG8): 11-21.
  • 8Freund R W, Nachtigal N M. QMR: a quasi-minimal residual method for non-Hermitian linear systems [J]. Numer Math, 1991, 60: 315-339.
  • 9Sogabe T, Zhang S L. Extended conjugate residual methods for solving nonsymmetric linear systems [M]//Yuan Y X. Numerical Linear Algebra and Optimization. Beijing/New York: Science Press, 2003: 88-99.
  • 10De Sturler E,van der Vorst H A. Reducing the effect of global communication in GMRES (m) and CG on parallel distributed memory computers [J]. Appl Numer Math, 1995, 18: 441-459.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部