期刊文献+

Schrdinger算子在新BMO空间上的有界性

Boundedness for Schrdinger Operators on Some New BMO Spaces
下载PDF
导出
摘要 借助于对核Qt(x,y):=t2Ks(x,y)s|s=t2,x,y∈n,t>0的估计得到了Qtf在一类新BMO空间上的有界性,其中Ks是Schrdinger算子Ts=e-sL的核L=-Δ+V,位势V(x)满足反向Hlder不等式,Δ是拉普拉斯算子. Boundedness is obtained on some new BMO spaces for Schrfdinger operators which is defined by Qt(x,y):=t2Ks(x,y)s|s=t2,x,y∈n,t〉0 where Ks is kernel of the SchrSdinger operators Ts=e-sL,L=-Δ+V,the potential V(x) satisfies the reverse H^lder inequality, and A is the Laplace operator.
作者 白莉红
出处 《兰州工业高等专科学校学报》 2013年第3期59-61,共3页 Journal of Lanzhou Higher Polytechnical College
关键词 SCHRODINGER算子 反向Holder不等式 BMOV(Rd) Schrodinger operators reverse Hoder iequality BMOv ( Rd )
  • 相关文献

参考文献6

  • 1Dziubanski J, Zienkiewicz J. Hardy space H^1 assocoiat- ed to Schrodinger operators with potential satisfying re- verse Holder inequality [J]. Rev. Math. Iberoam., 1999, 15(2) :279-296.
  • 2Dziubanski J, Zienkiewicz J. Schrodinger operators with Holder classes [J]. Colloq. 38. H^P spaces assocoiated with potentials from reverse Math. , 2003, 98 ( 1 ) : 5-.
  • 3Dziubatnski J, Garrigos G, Martinez T, et al. BMO spaces related to SchrSdinger operators with potentials satisfying a reverse Holder inequality [ J ]. Math. Z. , 2005, 249(2) :329-356.
  • 4Bongioannia B, Harboure * E, Salinasa O. Weighted inequalities for negative powers of Schrodinger operators [J]. J. Math. Anal. Appl., 2008, 348(1):12-27.
  • 5Shen Z V. L^p estimate for Schrodinger operators with cer- tain potentials [ J ]. Ann. Inst. Fourier, 1995, 45 (2) : 513-546.
  • 6Bennet C, Devore R A, Sharply R. Weak-L ^∞ and BMO [J]. Ann. Math., 1981, 113:601-611.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部