期刊文献+

基于签到数据的用户空间出行相似性度量方法研究 被引量:13

Clustering LBSNS Users Based on Check-in Records
下载PDF
导出
摘要 近年来,国内外类似街旁、人人、Foursquare、Gowalla等基于地理位置的移动社交网络(LBSN)发展迅猛,大量用户通过这些服务以签到的方式记录时空行为轨迹,这些个体行为轨迹数据为我们研究用户行为模式以及探究其内在规律提供了巨大的机会和挑战。然而,LBSN用户的相似性并没有从地理位置以及用户轨迹加以考虑,本文提出了基于格网划分的方式对用户空间出行进行相似性分析,通过用户轨迹建模以及相似序列匹配,探索用户出行轨迹的空间相似性度量方法并评估相似权重,最后通过用户好友关系与相似性权重的比对,证明了该方法的有效性。 LBSNS(Location Based Social Network Service) like Jiepang, Qieke, Renren Places, Foursquare and Gowalla support hundreds of millions of user to log their footprints through check-ins with spatio-temporal data. The increasing availability of large amounts of global-scale footprints data pertaining to an individual's trajectories bring us opportunities and challenges to model patterns of human mobility and automatically discover valuable knowledge from these footprints trajectories. In this paper, we aim to geographically mine the user similarity and explore particular user classification based on their footprints. Even though human movement and mobility pattern have a high degree of freedom and variation, they also exhibit strnctural patterns due to geographic and social constraints. Hence, we devise a framework to model each individual' s footprints, measure the similarity among users and explore the particular user classification. In this framework, we took into account the sequence property of user' s movement and evaluate this framework using the check-ins data of 602,239 users and 8,383,949 check-ins. Such user similarity is significant to individuals, communities and businesses by helping them retrieve information with high relevance.
出处 《地理信息世界》 2013年第3期26-30,共5页 Geomatics World
基金 国家自然科学基金项目(41171296 41271386 41271386)资助
关键词 时空数据 行为模式 位置服务 用户相似性 签到 Spatial-Temporal Data Mining Human Mobility Location Based Service User Similarity Check-In
  • 相关文献

参考文献19

  • 1Locals and Tourist-a set on Filcker[EB/OL].http://www. flickr, com/photos/walkingsf/ sets/72157624209 158632/. Referenced November 14, 2011.
  • 2M. C. Gonz61ez, C. A. Hidalgo, and A. L. Barab6si, Understanding individual human mobility patterns [J], Nature, vol. 453 (7196), 2008, pp. 779-82.
  • 3E. Cho, S.A. Myers, and J Leskovec, Friendship and mobility user movement in location based social networks[M], Proc ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining pp. 1082-1090, 2011.
  • 4L. Backstrom, E Marlow, Find me Sun, and C if you can improving geographical prediction with social and spatial proximity [M],Proc. Int. Conf. World Wide Web, pp. 60- 70, 2010.
  • 5Z. Cheng, J. Caverlee, and K. Lee, You are where you tweet: a content- based approach to geo-locating twitter users[M],Proc. ACM Int Conf. lnformation and Knowledge Management, pp. 759-768.2010.
  • 6S. Yardi,and D. Boyd, Dynamic debates:an analysis of grouppolarization over time on twitter [J], Bulletin Technology Society, 2010, pp. 316-327 of Science vol. 30 (5),.
  • 7Y. Zheng, L Ma, Mining Zhang, X. Xie, and, W interesting locations and travel sequences from gps trajectories[M],Proc. Int. Conf World Wide Web, pp. 791 -800,2009.
  • 8Boyd, D.M. and N.B. Ellison. Social network sites:difinition history, and scholarship[J] Computer-Mediated Communication (2007), 13 (1) :210-230.
  • 9Cho, E.,S.A. Myers, et al. Friendship and mobility: movement in locaiton- social networks[M].K Proceedings of the 17t 2011. user ased D'll ACM SIGKDD international conference on Knowledge discovery and data mlmng.
  • 10Eagle, N. , A. $. Pentland, et al. Inferring friendship network structure by using mobile phone data[J]. PNAS (2009) 106 (36) : 15274- 15278.

同被引文献195

引证文献13

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部