期刊文献+

非线性传送带系统的复杂分岔 被引量:8

Complex bifurcations in a nonlinear system of moving belt
原文传递
导出
摘要 讨论了一类单自由度非线性传送带系统.首先通过分段光滑动力系统理论得出系统滑动区域的解析分析和平衡点存在性条件;其次利用数值方法,对系统几种类型的周期轨道进行单参数和双参数延拓,得到系统的余维一滑动分岔曲线和若干余维二滑动分岔点,以及系统在参数空间中的全局分岔图.通过对系统分岔行为的研究,反映出传送带速度和摩擦力振幅对系统动力学行为有较大影响,揭示了非线性传送带系统的复杂动力学现象. bstract A kind of one-degree-of-freedom nonlinear moving belt system is considered. The analytical research of sliding region and existence conditions of equilibrium are first derived by the theory of piecewise-smooth dynamical system. Then, using numerical method, one- or two-parameter continuation of several types of periodic orbits of the system is calculated. We obtain codimension-1 sliding bifurcation curves, codimension-2 sliding bifurcation points, and global bifurcation diagram in parameter space for the system. The investigation of bifurcation behavior shows that the speed of moving belt and amplitude of friction have a great influence on dynamic behavior, and reveals the complex nonlinear dynamic phenomenon of the moving belt system.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第12期65-74,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10972059 11002046) 广西自然科学基金(批准号:2010GXNSFA013110 2013GXNSFAA019017) 广西青年科学基金(批准号:2011GXNSFB018060)~~
关键词 传送带系统 滑动分岔 周期运动 moving belt system sliding bifurcation periodic motion
  • 相关文献

参考文献15

  • 1Galvanetto U, Bishop S R 1994 Int. ,I. Mech. Sci. 36 683.
  • 2Galvanetto U, Bishop S R 1995 Chaos Soliton. Fract. 5 2171.
  • 3Filippov A F 1988 Differential Equations With Discontinuous Right- hand Side (Dordrecht: Kluwer Academic Publishers).
  • 4李群宏, 闫玉龙, 杨丹 2012 物理学报 61 200505.
  • 5Galvanetto U 2001 J. Sound Vib. 248 653.
  • 6Dankowicz H, Nordmark A B 2000 Physica D 136 280.
  • 7Bemardo M, Kowalczyk P, Nordmark A 2002 Physica D 170 175.
  • 8Li Q H, Chen Y M, Qin Z Y 2011 Chin. Phys. Lett. 28 030502.
  • 9Luo A C J, Gegg B C 2006 J. Sound Vib. 291 132.
  • 10Hetzler H, Schwarzer D, Seemann W 2007 Commun. Nonlinear Sci. Numer. Simulat. 12 83.

同被引文献63

  • 1陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45. 被引量:17
  • 2薛纭,刘延柱,陈立群.Kirchhoff弹性杆动力学建模的分析力学方法[J].物理学报,2006,55(8):3845-3851. 被引量:18
  • 3张思进,周利彪,陆启韶.线性碰振系统周期解擦边分岔的一类映射分析方法[J].力学学报,2007,39(1):132-136. 被引量:12
  • 4Wang G, Ostoja-Starzewski sheet/cloud cavitation on M. Large eddy simulation of a a NACA0015 hydrofoil [ J ]. Apphed Mathematical Modeling, 2007, 31:417-447.
  • 5Singhal A K, LI H Y, Athavale M M, et al. Mathematical basis and validation of the full cavitating high-speed torpedo [J]. Journal of Fluids Engineering, 2003, 125:459-468.
  • 6Li Q T, He Y S, XUE L P. A numerical simulation of pitching motion of the ventilated supercaviting vehicle around its nose [ J ]. Chinese Journal of Hydrodrnamics, 2011, 26(6) : 589 -685.
  • 7Lin G J, Balachandran B, Abed E H. Nonlinear dynamics and bifurcations of a supercavitating vehicle[ J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 753-761.
  • 8Lin G J, Balachandran B, Abed E H. Dynamics and control of supercavitating vehicles [ J ]. Journal of Dynamic Control Systems, Measurement, and Control, 2008,130:021003.
  • 9Nguyen V, Balachandran B. Supercavitationvechicles with noncylindrical, nonsymmetric cavities: dynamics and insta- bilities [ J ]. Journal of Computational and Nonlinear Dynam- ics, 2011, 6(4) : 041001.
  • 10Lin G J, Balachandran B, Abed E. Supereavitating body dy- namics, bifurcation and control [ C ]. 2005 American Control Conference. Portland, OR, USA. 2005, 6:691-696.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部