期刊文献+

BiOCl{001}表面原子与电子结构的第一性原理研究 被引量:6

Study on the atomic and electronic structures of BiOCl{001} surface using first principles
原文传递
导出
摘要 基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl,{001}-BiO和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能.计算结果表明:{001}-1Cl,{001}-BiO和{001}-2Cl表面均发生明显弛豫,而在双Cl原子层处的层间距变化较大,但未出现振荡弛豫现象,其中{001}-1Cl表面弛豫较小.与体相BiOCl电子结构相比,BiOCl{001}面具有较窄的带隙宽度,并呈现较强局域性:对于{001}-BiO表面,其导带与价带均往低能方向发生较大移动,并且在导带底部出现表面态;而{001}-2Cl表面的表面态主要出现在价带顶;{001}-1Cl表面的带隙中则无表面态产生;表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小.BiOCl{001}三种终端表面的表面能分析结果表明,{001}-1Cl表面的表面能最小(0.09206J.m^(-2)),结构最稳定,而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461J.m^(-2).理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性,但在BiOCl晶体生长过程中不易暴露.本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释,进一步为BiOCl新型光催化材料的应用研究提供理论指导. The surface relaxations,band structures,densities of states and surface energies of BiOCI{001}surfaces containing{001}-1C1,{001}-BiO and{001}-2C1 are studied using first-principles based on density functional theory.The calculated results indicate that there exist obvious relaxations for the three types of{001}surfaces,especially for their double chlorine layers.The relaxation result of{001}-IC1 surface is the minimum one in the BiOCI{001}surfaces.Compared with the electronic structure of bulk BiOC1,BiOCI{001}surfaces exhibit the smaller band gap and stronger localized energy levels.Besides,both conduction and valence band of{001}-BiO shift towards the lower energy and there exist surface states at the bottom of conduction band.For{001}-2C1,surface states are located at the top of valence band.The occurrences of these surface states can lead to the obvious reductions of band gaps for{001}-BiO and{001}-2C1.Furthermore,the surface energy of BiOCI{001}is calculated and investigated.The analysis results show that surface energies of{001}-1C1,{001}-BiO and{001}-2C1 are 0.09206 J.m-2,2.392 J.m^(-2)and 2.461 J-m^(-2),respectively.Thus the{001}-1C1 possesses the minimum surface energy and the highest stability,while{001}-BiO and{001}-2C1 exhibit the higher reaction activities and are difficult to be exposed in the growth process of BiOC1 crystal.Our obtained results provide the theoretical guidance for the further understanding of the facet-dependent photoreactivity of BiOC1,the fine manipulation of their photoreactivity,and the progress of actual application for BiOC1 photocatalytic material.
作者 李国旗 张小超 丁光月 樊彩梅 梁镇海 韩培德 Li Guo-Qi;Zhang Xiao-Chao;Ding Guang-Yue;Fan Cai-Mei;Liang Zhen-Hai;Han Pei-De(College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第12期437-444,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:21176168) 山西省国际合作项目(批准号:2012081017) 太原市科技项目(批准号:120123)
关键词 BiOCl{001}表面 表面弛豫 表面能 第一性原理 BiOCl{001}surface surface relaxation surface energy first-principles
  • 相关文献

参考文献1

二级参考文献58

  • 1Fujishima A, Honda K. Nature, 1972, 238:37-38.
  • 2O'tegan B, Gratzel M. Nature, 1991, 353:737-740.
  • 3Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95 : 69-96.
  • 4Mills A, Hunte S L. J. Photochem. Photobiol. A: Chem., 1997, 108 : 1-35.
  • 5Fujishima A, Hashimoto K, Watanabe T. TiO2 Photocatalysis Fundamentals and Applications. Tokyo: BKC Inc., 1999.
  • 6Carp O, Huisman C L, Relier A. Prog. Solid State Chem., 2004, 32:33-177.
  • 7Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994, 98: 13669-13679.
  • 8Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293: 269-271.
  • 9Khan S U M, Al-Shahry M I J, William B. Science, 2002, 297: 2243-2245.
  • 10KudoA, Kate H, Nakagawa S. J. Phys. Chem. B, 2000, 104: 571-575.

共引文献62

同被引文献83

  • 1肖莉红,顾牡,刘小林,张睿,刘冰洁,徐昕.Zn^(2+)掺杂对GdTaO_4:Eu^(3+)荧光粉结构和发光性能的影响[J].光谱学与光谱分析,2007,27(6):1054-1057. 被引量:7
  • 2Cheng H F, Huang B B, Dai Y. Engineering BiOX (X = Cl, Br, I ) Nanostructures for Highly Efficient Photocatalytic Applications [ J ]. Nanoscale, 2014,6 : 2009 -2026.
  • 3Gondal M A, Chang X F, Amani Z H. UV-light Induced Photocatalytic Decolorization of Rhodamine 6G Molecules over BiOCl from Aqueous Solution [ J ]. Chemical Engineering Journal,2010,165 ( 1 ) :250-257.
  • 4Ye L Q, Deng K J, Xu F, et al. Increasing Visible-light Absorption for Photocatalysis with Black BiOCl [ J ]. Physical Chemistry Chemical Physics ,2012,14:82-85.
  • 5Pare B, Sarwan B, Jonnalagadda S B. The Characteristics and Photocatalytic Activities of BiOCl as Highly Efficient Photocatalyst[ J]. Journal of Molecular Structure,2012,1007 ( 11 ) : 196-202.
  • 6Zhang K L, Liu C M, Huang F Q, et al. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst[ J]. Applied Catalysis B : Environmental, 2006,68 ( 3 -4 ) : 125 -129.
  • 7Wu S J, Wang C, Cui Y F. Synthesis and Photocatalytic Properties of BiOCI Nanowire Arrays [ J ]. Materials Letters,2010,64(2) :115-118.
  • 8Yu J H, Wei B, Zhu L, et al. Flowerlike C-doped BiOCI Nanostructures: Facile Wet Chemical Fabrication and Enhanced UV Photocatalytic Properties [ J ]. Applied Surface Science,2013,284:497-502.
  • 9Yu C L, Cao F F, Li G, et al. Novel Noble Metal (Rh, Pd, Pt)/BiOX( Cl, Br, I) Composite Photocatalysts with Enhanced Photocatalytie Performance in Dye Degradation [ J ]. Separation and Purification Technology,2013,120 : 110-122.
  • 10Klahr B, Gimenez S, Fabregat-Santiago F, et al. Water Oxidation at Hematite Photoelectrodes : the Role of Surface States [ J ]. Journal of the American Chemical Socety,2012,134 ( 9 ) :4294-4302.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部