期刊文献+

利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究 被引量:2

Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes
原文传递
导出
摘要 采用聚碳酸酯模板和电化学沉积法制备基于金纳米棒的Raman场增强衬底,制备的金纳米棒直径大约36nm,长约1μm,测试结果显示其共振吸收峰的位置约为540nm.比较了谐振和非谐振条件下的场增强情况,并确定了场增益系数,结果显示谐振激光激发下的增益比非谐振情况下提高了7.36倍.本研究相对于前人的工作取得了如下进展:一是讨论了谐振模式与非谐振模式下的金纳米棒的场增益系数,利用谐振波长的激光激发金纳米棒,进一步提高了场增益;二是消除了聚碳酸酯模板分子的荧光背底,使其在表面增强Raman散射方面的应用进一步变得可行. Using a polycarbonate membrane (PCM) as a template, and combining with the electrochemical deposition method, we prepare gold nanorods each with about 36 nm in diameter and 1 μm in length. We measure transmission spectra, and find that the resonant absorption peak is at around 540 nm. Subsequently, the enhancement effects of the nanorods are investigated with 514 nm and 633 nm laser excitations. Comparing the spectra under resonant condition with those under non-resonant condition, we conclude that the field enhancement effect under the resonant excitation is more prominent than under the non-resonant excitation. The enhancement factor under the resonant excitation is increased to 7 times of the factor under the non-resonant excitation. Comparing with similar researches, we achieve the following two improvements: 1) with a resonant excitation, we significantly increase the enhancement factor of gold nanorods; 2) we eliminate the fluorescence of PCM molecules, thus make the template method more feasible for transparent surface-enhanced Raman scattering substrate applications.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第12期473-478,共6页 Acta Physica Sinica
基金 国家自然科学青年科学基金(批准号:11004231) 中国科学院物理研究所人才启动项目 中国教育部留学回国人才科研启动基金~~
关键词 金纳米棒 表面增强Raman散射 聚碳酸酯模板 gold nanorods surface-enhanced Raman scattering polycarbonate membrane
  • 相关文献

参考文献34

  • 1Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753.
  • 2Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unlu M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404.
  • 3Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428.
  • 4Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Unlu M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083.
  • 5Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163.
  • 6Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1.
  • 7Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215.
  • 8Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466.
  • 9Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794.
  • 10Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013.

二级参考文献34

  • 1El Sayed M A. Acc. Chem. Res.. 2001.34 : 257.
  • 2;Murphy C J,Sau T K, Golc A M et al. j. Phys. Chern. B,2005,109 : 13857.
  • 3Jain P K.Lee K S.EI Sayed I H etal. J. Phys. Chem. B.2006, 110:7238.
  • 4Xia Y et al. MRS Bulletin,2005, 30:338.
  • 5Sun Y G,Xia Y N,Science,2002.298:2176.
  • 6Sau T K,Murphy C J.J. Am. Chem. Soc. ,2004,126:8648.
  • 7Petroski J M,Wang Z L,Green T C et al. J. Phys.Chem. B. 1998,102:3316.
  • 8Wang Z I,.J. Phvs. Chem B.2000.104:1153.
  • 9Wang Z L, Mohamed M B, Link S et al. Surf. Sci. , 1999.4,10 . L809.
  • 10Xiang Y J.Wu X C.Liu D F el cd. Nano Lett. ,2006.6:2290.

共引文献1

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部