摘要
网络中节点重要性度量对于研究网络的鲁棒性具有十分重要的意义.研究者们普遍运用度或集聚系数来度量节点的重要程度,然而度指标只考虑节点自身邻居个数而忽略了其邻居之间的信息,集聚系数只考虑节点邻居之间的紧密程度而忽略了其邻居的规模.本文综合考虑节点的邻居个数,以及其邻居之间的连接紧密程度,提出了一种基于邻居信息与集聚系数的节点重要性评价方法.对美国航空网络和美国西部电力网进行的选择性攻击实验表明,采用该方法的效果较k-shell指标可以分别提高24%和112%.本文的节点重要性度量方法只需要考虑网络局部信息,因此非常适合于对大规模网络的节点重要性进行有效分析.
The node importance measurement plays an important role in analyzing the robustness of the network. Most researchers use the degree or clustering coefficient to measure the node importance. However, the degree can only take into account the neighbor size, regardless of the clustering property of the neighbors. The clustering coefficient could only measure the closeness among the neighbors and neglect the activity of the target node. In this paper, we present a new method to measure the node importance by combining neighbor and clustering coefficient information. The robustness results measured by the network efficiency through removing the important nodes for the US Air network, the power grid of the western United States and Barabasi-Albert networks show that the new method can more accurately evaluate the node importance than the degree, neighbor information and k-shell indices.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第12期522-526,共5页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11275186
71071098
71171136
91024026)
上海市青年科技启明星计划(A类)(批准号:11QA1404500)
上海市教委科研创新项目(批准号:11ZZ135
11YZ110)
教育部科学技术研究重大项目(批准号:211057)
上海市一流学科(系统科学)建设项目(批准号:XTKX2012)
上海市研究生创新基金(批准号:5411115004)~~
关键词
网络科学
鲁棒性
节点重要性
集聚系数
network science
robustness
node importance
clustering coefficient