期刊文献+

STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC 被引量:2

STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC
原文传递
导出
摘要 Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high number of unknown parameters, against mea- sured data have received less attention. In this paper, we describe how a combination of simulated data and Markov Chain Monte Carlo (MCMC) methods can be used to study the identifiability of model parameters with different type of measurements. Three known models are used as case studies to illustrate the importance of parameter identi- fiability: a basic SIR model, an influenza model with vaccination and treatment and a HIV-Malaria co-infection model. The analysis reveals that calibration of complex models commonly studied in mathematical epidemiology, such as the HIV Malaria co-dynamics model, can be difficult or impossible, even if the system would be fully observed. The pre- sented approach provides a tool for design and optimization of real-life field campaigns of collecting data, as well as for model selection.
出处 《International Journal of Biomathematics》 2013年第2期155-172,共18页 生物数学学报(英文版)
关键词 EPIDEMIOLOGY compartmental models MCMC parameter estimation. 模型参数 流行病学 MCMC 参数识别 蒙特卡罗方法 马尔科夫链 SIR模型 动力学模型
  • 相关文献

参考文献19

  • 1M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dynam. Syst. 3(4) (2004) 503-524.
  • 2N. G. Becker, Analysis of Infectious Disease Data, Monographs on Statistics and Applied Probability (Chapman and Hall, 1989).
  • 3T. Britton, T. Kypraios and P. D. O'Neill, Statistical models for epidemic models with three levels of mixing, Scand. J. Statist. 28(3) (2011) 578-599.
  • 4S. Cauchemez, F. Carrat, C. Viboud, A. J. Valleron and P. Y. Boelle, A Bayesian MCMC approach to study transmission of influenza: Application to household longitudinal data, Statist. Med. 23 (2004) 3469-3487.
  • 5O. Diekmann and A. J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology (John Wiley and Sons, 2000).
  • 6G. Gibson and E. Renshaw, Estimating parameters in stochastic models compartmental using Markov chain methods, Int. Math. Appl. J. Math. Appl. Med. Bioi. 15 (1998) 19-40.
  • 7W. R. Gilks, S. Richardson and D. J. Speigelhalter (eds.), Markov Chain Monte Carlo in Practice (Chapman and Hall, 1996).
  • 8J. Guedj, R. Thiebaut and D. Commenges, Practical identifiability of HIV dynamics models, Bull. Math. BioI. 69(8) (2007) 2493-2513.
  • 9H. Haario, L. Kalachev and M. Laine, Reduced models of algae growth, Bull. Math. Bioi. 71(7) (2009) 1626-1648.
  • 10H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC, Statist. Comput. 16 (2006) 339-354.

同被引文献1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部