THE EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A QUASILINEAR PARABOLIC SYSTEM
THE EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A QUASILINEAR PARABOLIC SYSTEM
摘要
In this paper, we investigate the existence, stability and global attractivity of T-periodic solutions for a class of quasilinear parabolic equations under Robin boundary conditions. We obtain that periodic solutions exist if the inter-specific competition rates are weak. The numerical simulations are also presented to illustrate our result.
参考文献11
-
1S. M. Fu and S. B. Cui, Persistence in a periodic competitor-competitor-mutualist diffusion system, J. Math. Anal. Appl. 263 (2001) 234-245.
-
2T . .T. Li and W . .T. Gao, Global existence and nonexistence for some degenerate and strongly couples quasilinear parabolic systems, J. Math. Anal. Appl. 387 (2012) 1-7.
-
3C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl. 340 (2005) 423-450.
-
4C. V. Pao, The global attractor of a competitor-competitor-mutualist reactiondiffusion systems with time delays, Nonlinear Anal. 67 (2007) 2623-2631.
-
5C. V. Pao and W. H. Ruan, Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions, J. Math. Anal. Appl. 333 (2007) 472-499.
-
6B. Rai, H. I. Freedman and J. Addicott, Analysis of three species models of mutualism in predator-prey and competitive systems, Math. Biosci. 65 (1983) 13-50.
-
7C. R. Tian and Z. G. Lin, Periodic solutions of reaction diffusion systems in a halfspace domain, Nonlinear Anal. 9 (2008) 811-821.
-
8A. Tineo, Asymptotic behavior of solutions of a periodic reaction-diffusion system of a periodic reaction-diffusion system of a competitor-competitor-mutualist model, J. Differential Equations 108 (1994) 326-341.
-
9X. Q. Zhao, Global asymptotic behavior in a periodic competitor-competitormutualist parabolic system, Nonlinear Anal. 29 (1997) 551-568.
-
10S. N. Zheng, A reaction-diffusion system of a competitor-competitor-mutualist model, J. Math. Anal. Appl. 124 (1987) 254-280.
-
1罗李平,罗振国,杨柳.具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析[J].应用数学学报,2016,39(1):21-30. 被引量:8
-
2杨万利,杨庆之.一类拟线性抛物系统解的整体存在性[J].中国科学院研究生院学报,1999,16(1):10-18.
-
3杨万利.一类带有交错扩散影响的拟线性抛物系统[J].Journal of Mathematical Research and Exposition,2000,20(1):77-83.
-
4杨万利,李有伟.一类拟线性抛物系统解的整体存在性[J].数学学报(中文版),2000,43(4):711-718. 被引量:1
-
5何红英,董旺远.含有一个控制的拟线性抛物系统的能控性[J].数学物理学报(A辑),2011,31(1):154-172.
-
6Yi YAO.The J-flow on Toric Manifolds[J].Acta Mathematica Sinica,English Series,2015,31(10):1582-1592.
-
7田会英,董运刚,姚立,杨万利.一类带一般交错扩散影响的拟线性抛物系统解的整体存在性[J].数学的实践与认识,2003,33(7):108-111.
-
8杨万利.一类带有交错扩散影响的拟线性抛物系统[J].装甲兵工程学院学报,1997,11(2):16-21.
-
9田会英,董运刚,杨万利,姚立.一类拟线性抛物系统解的整体存在性[J].数学的实践与认识,2003,33(11):106-110.
-
10HAN YU-ZHU WEI YING-JIE GAO WEN-JIE.A Quasilinear Parabolic System with Nonlocal Boundary Conditions and Localized Sources[J].Communications in Mathematical Research,2011,27(4):315-330. 被引量:2