摘要
A high-performance Ni/ZnO adsorbent was prepared by homogeneous precipitation using urea hydro- lysis and characterized by N2 adsorption-desorption, X-ray diffraction (XRD), and scanning electron microscope (SEM). The adsorbent was applied to the deep desulfur- ization of gasoline and showed a high breakthrough sulful capacity and a remarkably high volume hourly space velocity. The effects of coexisting olefins in gasoline as well as adsorptive conditions on the adsorptive perfor- mance were examined. It was found that olefins in gasoline had a slightly inhibiting effect on the desulfurization performance of the adsorbent. The optimum conditions were 673 K, 1.0 Mpa with a volume hourly space velocity of 60h^-1. Under the optimum conditions, ultralow sulfur gasoline could be produced and the breakthrough sulfur capacity of the adsorbent was 360 mg-s/g-sorb for the model gasoline.
A high-performance Ni/ZnO adsorbent was prepared by homogeneous precipitation using urea hydro- lysis and characterized by N2 adsorption-desorption, X-ray diffraction (XRD), and scanning electron microscope (SEM). The adsorbent was applied to the deep desulfur- ization of gasoline and showed a high breakthrough sulful capacity and a remarkably high volume hourly space velocity. The effects of coexisting olefins in gasoline as well as adsorptive conditions on the adsorptive perfor- mance were examined. It was found that olefins in gasoline had a slightly inhibiting effect on the desulfurization performance of the adsorbent. The optimum conditions were 673 K, 1.0 Mpa with a volume hourly space velocity of 60h^-1. Under the optimum conditions, ultralow sulfur gasoline could be produced and the breakthrough sulfur capacity of the adsorbent was 360 mg-s/g-sorb for the model gasoline.