期刊文献+

Limit theorems for the position of a tagged particle in the stirring-exclusion process

Limit theorems for the position of a tagged particle in the stirring-exclusion process
原文传递
导出
摘要 Stirring-exclusion processes are exclusion processes with particles being stirred. We investigate a tagged particle among a Bernoulli product environment measure on the lattice Zd. We show the strong law of large numbers and the central limit theorem for the tagged particle. The proof of the central limit theorem is based on the method of martingale decomposition with a sector condition. Stirring-exclusion processes are exclusion processes with particles being stirred. We investigate a tagged particle among a Bernoulli product environment measure on the lattice Zd. We show the strong law of large numbers and the central limit theorem for the tagged particle. The proof of the central limit theorem is based on the method of martingale decomposition with a sector condition.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第3期479-496,共18页 中国高等学校学术文摘·数学(英文)
关键词 Tagged particle stirring-exclusion central limit theorem sectorcondition Tagged particle stirring-exclusion central limit theorem sectorcondition
  • 相关文献

参考文献26

  • 1Arratia R. The motion of a tagged particle in the simple symmetric exclusion system on Z1. Ann Probab, 1983, 11:362-373.
  • 2Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems. London Math Soc Lecture Note Ser, 229. Cambridge: Cambridge University Press, 1996.
  • 3De Masi A, Ferrari P A. Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process. J Stat Phys, 2002, 107(3-4): 677-683.
  • 4De Masi A, Ferrari P A, Goldstein S, Wick W D. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Star Phys, 1989, 55(3-4): 787-855.
  • 5Feller W. An Introduction to Probabillty Theory and Its Applications. Vol II. 2nd ed. New York: John Wiley & Sons, 1971.
  • 6Ferrari P A. Limit theorems for tagged particles. Disordered systems and statistical physics: rigorous results. Markov Process Related Fields,1996, 2(1): 17-40.
  • 7Ferrari P A, Fontes L R G. Poissonian approximation for the tagged particle in asymmetric simple exclusion. J Appl Probab, 1996, 33(2): 411 419.
  • 8Kallenberg O. Foundations of Modern Probability. 2nd ed. Probability and Its Applications. New York: Springer-Verlag, 2002.
  • 9Kipnis C. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab, 1986, 14(2): 397-408.
  • 10Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 320. Berlin: Springer-Verlag, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部