期刊文献+

A computational algebraic-geometry method for conditional-independence inference

A computational algebraic-geometry method for conditional-independence inference
原文传递
导出
摘要 We consider the problems of semi-graphoid inference and of independence implication from a set of conditional-independence statements. Based on ideas from R. Hemmecke et al. [Combin. Probab. Comput., 2008, 17:239 257], we present algebraic-geometry characterizations of these two problems, and propose two corresponding algorithms. These algorithms can be realized with any computer algebra system when the number of variables is small. We consider the problems of semi-graphoid inference and of independence implication from a set of conditional-independence statements. Based on ideas from R. Hemmecke et al. [Combin. Probab. Comput., 2008, 17:239 257], we present algebraic-geometry characterizations of these two problems, and propose two corresponding algorithms. These algorithms can be realized with any computer algebra system when the number of variables is small.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第3期567-582,共16页 中国高等学校学术文摘·数学(英文)
基金 The authors wish to thank the referees for very helpful comments which greatly improved the presentation of this paper. This work was partially supported by the National Natural Science Foundation of China (Grant No. 11025102), Program for Changjiang Scholars and Innovative Research Team in University, and the Jilin Project (20100401).
关键词 Conditional independence independence implication radicalmembership semi-graphoid inference structural imset Conditional independence independence implication radicalmembership semi-graphoid inference structural imset
  • 相关文献

参考文献32

  • 14ti2 team: 4ti2--A software package for algebraic, geometric and combinatorial problems on linear spaces, www.4ti2.de.
  • 2Baioletti M, Busanello G, Vantaggi B. Conditional independence structure and its closure: Inference rules and algorithms. Int J Approx Reason, 2009, 50:1097-1114.
  • 3Bouckaert R R, Hemmecke R, Lindner S, Studen: M. Efficient algorithms for conditional independence inference. J Mach Learn Res, 2010, 11:3453-3479.
  • 4Bouckaert R R, Studen: M. Racing algorithms for conditional independence inference. Int J Approx Reason, 2007, 45:386-401.
  • 5Bruns W, Hemmecke R, Ichim B, KSppe M, SSger C. Challenging computations of Hilbert bases of cones associated with algebraic statistics. Experiment Math, 2011, 20: 25-33.
  • 6Chickering D M. Optimal structure identification with greedy search. J Mach Learn Res, 2002, 3:507-554.
  • 7Cowell R G, Dawid A P, Lauritzen S L, Spiegelhalter D G. Probabilistic Network and Expert System. New York: Springer-Verlag, 1999.
  • 8Cox D, Little J, O'Shea D. Ideals, Varieties, and Algorithms. 3rd ed. Undergrad Texts Math. New York: Springer, 2007.
  • 9Cox D R, Wermuth N. Multivariate Dependencies: Models Analysis and Interpretation. London: Chapman & Hall, 1993.
  • 10Dawid A P. Conditional independence in statistical theory. J Roy Statist Soc Ser B, 1979, 4]: 1-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部