期刊文献+

分子动力学模拟法研究糖类衍生物与钠-葡萄糖协同转运蛋白2的相互作用 被引量:3

Interaction of carbohydrate derivatives and sodium-glucose cotransporters 2 by molecular dynamic simulation
原文传递
导出
摘要 目的利用分子动力学模拟方法研究糖类衍生物与钠-葡萄糖协同转运蛋白2(SGLT2)相互作用过程,探索SGLT2抑制剂的微观作用机制和构效关系。方法同源模建SGLT2的结构,利用GROMACS程序包进行SGLT2、SGLT2和葡萄糖复合物、SGLT2与糖类衍生物的复合物等8个结构的模拟计算,通过轨迹分析配体与SGLT2之间及分解结构的相互作用能,考察关键残基和配体的均方根涨落(RMSF)。结果分子动力学模拟得到的配体与受体的相互作用能比对接得分有更高的实验结果相关性和筛选能力。SGLT2参与相互作用的关键残基为H80、K154、D158、Y290,较重要的残基可能为N75和F453,辅助性残基可能为W291、Q295和S393。配体之间具有比较一致的构象,片段A和C对受体结合具有更重要的作用。A片段构象固定,C片段的体积、刚性和极性增加可以增加结合强度。结论分子动力学模拟结果能够较好地表现配体与SGLT2之间的相互作用,对于设计SGLT2抑制剂类新药具有较明确的指导作用。 Objective To investigate the interactions between carbohydrate derivatives and sodium-glucose cotransporters 2 (SGLT2) using molecular dynamic (MD) method and to explore the mechanisms and structure-activity relationship of SGLT2 inhibitors. Methods The homologous structure of SGLT2 was modeled, the GROMACS program was used to model eight structures, such as SGLT2, SGLT2-glucose compound, and SGLT2-carbohydrate compound. And the root mean square fluctuation (RMSF) of the key residues and ligands and the interaction energy between the ligands and SGLT2 was investigated by trajectory analysis. Results The interaction energy calculated by MD method had the higher correlation with experimental results than that by molecular docking method. HS0, K154, D158, and Y290 were the key residues involved in the interaction, N75 and F453 were the important residues, and W291, Q295, and $393 might be the auxiliary residues. The ligands had a relatively consistent conformation, and fragments A and C played the more important roles in receptor binding. And the size, rigidity, and polarity increasing could elevate the bonding strength. Conclusion MD simulation results could display the good performance of the interaction between the ligands and SGLT2, and could give clear guidance for the design of new SGLT2 inhibitors.
出处 《中草药》 CAS CSCD 北大核心 2013年第11期1440-1447,共8页 Chinese Traditional and Herbal Drugs
基金 国家重大新药创制专项(2011ZX09401-009 2010ZX09401-307-1-1) 天津科技支撑项目(10ZCKFSH01300)
关键词 糖类衍生物 钠-葡萄糖协同转运蛋白2 相互作用能 分子动力学模型 钠-葡萄糖协同转运蛋白2抑制剂 carbohydrate derivatives sodium-glucose cotransporters 2 interaction energy molecular dynamic model sodium-glucose cotransporters 2 inhibitors
  • 相关文献

参考文献17

  • 1Isaji M. Sodium-glucose cotransporter inhibitors for diabetes [J], Curt Opin lnvestig Drugs, 2007, 8(4): 285-292.
  • 2Washburn W N. Development of the renal glucose reabsorption inhibitors: A new mechanism for the pharmacotherapy of diabetes mellitus type 2 [J]. Med Chem, 2009, 52(7): 1785-1794.
  • 3王小彦,王玉丽,徐为人.近几年治疗糖尿病热点靶点的研究进展[J].药物评价研究,2012,35(1):42-45. 被引量:38
  • 4Ghosh R K, Ghosh S M, Chawla S, et al. SGLT2 inhibitors: A new emerging therapeutic class in the treatment of type 2 diabetes mellitus [J]. J Clin Pharmacol, 2012, 52(4): 457-463.
  • 5Washburn W N. Sodium glucose co-transporter 2 (SGLT2) inhibitors: Novel antidiabetic agents [J]. Expert Opin Ther Pat, 2012, 22(5): 483-494.
  • 6Faham S, Watanabe A, Besserer G M, et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na^+/sugar symport [J]. Science, 2008, 321(5890): 810-814.
  • 7Abramson J, Wright E M. Structure and function of Na (+)-symporters with inverted repeats [J]. Curt Opin Struct Biol, 2009, 19(4): 425-432.
  • 8Wright E M, Loo D D F, Hirayama B A. Biology of human sodium glucose transporter [J], Physiol Rev, 2011, 91(2): 733-794.
  • 9Diez-Sampedro A, Wright E M, Hirayama B A. Residue 457 controls sugar binding and transport in the Na (+)/Ecose cotransporter [J]. J Biol Chem, 2001, 276(52): 49188-49194.
  • 10Napari I, Vehkamaki H, Laasonen K. Molecular dynamic simulations of atom-cluster collision processes [J]. J Chem Phys, 2004, 120(1): 165-169.

二级参考文献63

  • 1Meng W,Ellsworth BA,Nirschl AA,et al.Discovery of dapagliflozin:a potent,selective renal sodium-dependent glucose cotransporter 2 (SGLT2)inhibitor for the treatment of type 2 diabetes[J].J Med Chem,2008,51(5):1145-1149.
  • 2Hanefeld M,Forst T.Dapagliflozin,an SGLT2 inhibitor,for diabetes[J].Lancet,2010,375(9733):2196-2198.
  • 3Wright EM,Loo DD,Hirayama BA,et al.Surprising versatility of Na+/glucose cotransporters:SLC5[J].Diabet Med,2010,27(2):136-142.
  • 4Brown GK.Glucose transporters:structure,function and consequences of deficiency[J].J Inherit Metab Dis,2000,23(3):237-246.
  • 5Bakris GL,Fonseca VA,Sharma K,et al.Renal sodiumglucose transport:role in diabetes mellitus and potential clinical implications[J],Kidney Int,2009,75(12):1272-1277.
  • 6Wright EM,Turk E.The sodium/glucose cotransport family SLC5[J].Pflugers Arch,2004,447(5):510-518.
  • 7Hediger MA,Coady MJ,Ikeda TS,et al.Expression cloing and cDNA sequencing of the Na+/glucose co-transporter[J].Nature,1987,330(6146):379-381.
  • 8Wells RG,Pajor AM,Kanai Y,et al.Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter[J].Am JPhysiol,1992,263(3 Pt 2):F459-F465.
  • 9Kanai Y,Lee WS,You G,et al.The human kidney low affinity Na+/glucose co-transporter SGLT2.Delineation of the major renal reabsorptive mechanism for D-glucose[J].J Clin Invest,1994,93(1):397-404.
  • 10Turk E,Zabel B,Mundlos S,et al.Glucose/galactose malabsorption caused by defect in the Na+/glucose co-transporter[J].Nature,1991,350(6316):354-356.

共引文献46

同被引文献52

  • 1Yang W, Lu J, Weng J, et al.Prevalence of diabetes amo- ng men and women in China[J].N Engl J Med, 2010,362 (12): 1090-1101.
  • 2Bi Y, Zhu D, Cheng J, et al.The status of glycemie con- trol: a cross-sectional study of outpatients with type 2 dia- betes mellitus across primary, secondary, and tertiary hos- pitals in the Jiangsu province of China [J].Clin Ther, 2010,32(5) :973-983.
  • 3Ehrenkranz JR, Lewis NG, Kahn CR, et al.Phlorizin: a re- view[J]. Diabetes Metab Res Rev, 2005,21 ( 1 ) : 31-38.
  • 4Wright EM, Hirayama BA, Loo DF.Active sugar trans- port in health and disease [J] .J Intern Med, 2007,261 ( 1 ): 32-43.
  • 5Tabatabai NM, Sharma M, Blumenthal SS, et al.Enhanc- ed expressions of sodium-glucose cotraClsporters in the kidneys of diabetic zucker rats [J].Diabetes Res Clin Pract, 2009,83 ( 1 ) : 27-30.
  • 6Kleta R, Stuart C, Gill FA, et al.Renal glucosuria due to SGLT2 mutations [J].Mol Genet Metab, 2004, 82 (1) : 56-58.
  • 7Calado J, Loeffier J, Sakallioglu O,et al.Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting[ J ] .Kidney Int, 2006,69 (5) : 852-855.
  • 8Calado J, Sznajer Y, Metzger D, et al.Twenty-one addi- tional cases of familial renal glucosuria: absence of genet- ic heterogeneity, high prevalence of private mutations and further evidence of volume depletion [ J].Nephrol Dial Transplant, 2008,23 (12) : 3874-3879.
  • 9Misra M. SGLT2 inhibitors: a promising new therapoutic option for tretment of type 2 diabetes mellitus [J]. J Pharm Pharmacol, 2013,65 (3) : 317-327.
  • 10Magen D, Sprecher E, Zelikovic I, et al.A novel missense mutation in SLC5A2 encoding SGLT2 underlies autoso- real-recessive renal glucosuria and aminoaciduria [ J].Kid- ney Int, 2005,67 ( 1 ) : 34-41.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部