期刊文献+

棉花纤维发育早期RNA-Seq转录组分析 被引量:8

Transcriptome Analysis of Early Developing Cotton Fiber by RNA-Seq
下载PDF
导出
摘要 为了揭示棉花纤维发育早期基因表达变化情况,本研究以纤维长度存在显著差异的两个陆海回交近交系NMGA-062(32.58 mm)和NMGA-105(27.06 mm)为材料,利用Illumina HiSeqTM 2000对0、3 DPA(Dayspost anthesis)的胚珠及10 DPA的纤维进行RNA-Seq测序。六个文库进行拼接,共得到长度大于200 bp的Unigene 98464个,总长度约为88.2 Mb。对10 DPA的纤维转录组数据进行差异表达分析,共筛选到1931个差异表达基因,1536个Unigene上调,395个Unigene下调。GO(Gene ontology)功能显著性富集和Pathway显著性富集分析发现,差异表达基因富集在脂质转移活性(Lipid transport activity)分子功能组和脂质代谢通路(Lipid metabolism pathway),由此推测脂类相关基因可能在纤维伸长发育过程中起重要作用。通过对棉纤维发育10 DPA基因转录水平差异比较分析,为深入开展纤维伸长相关功能基因的克隆和功能验证提供了丰富的资源,并为揭示棉花纤维伸长的机制打下了坚实的基础。 To obtain global insights into early developing fiber transcriptome characteristics, six sequencing libraries of early de- veloping cotton fiber were constructed and sequenced using Illumina RNA sequencing. These libraries represented initiation (0 d post-anthesis (DPA) and 3 DPA) and elongation (10 DPA) stages from two backcross inbred lines having significant differences in fiber length: NMGA-062 (32.58 mm) and NMGA-105 (27.06 mm). Each sample yielded 4.6 Gb of available transcriptome data, with 98464 unigenes longer than 200 bp obtained by de novo assembly. When we compared NMGA-062 with NMGA-105 at 10 DPA, we uncovered 1931 differentially expressed genes(DEGs), of which 1536 were up-regnlated and 394 were down-reg- ulated. Gene Ontology functional enrichment and pathway enrichment analyses revealed that the DEGs were primarily associat- ed with lipid transport and metabolism pathways, suggesting that lipid-related genes play an important role in cotton fiber elon- gation. The large number of DEGs detected by comparative analysis of 10-DPA cotton fiber transcriptome profiles provides a firm foundation for cloning and functional verification of fiber-related genes.
出处 《棉花学报》 CSCD 北大核心 2013年第3期189-196,共8页 Cotton Science
基金 国家973计划(2010CB126006) 国家863计划(2012AA101108-02-03)
关键词 棉纤维发育早期 RNA-SEQ QRT-PCR early developing cotton fiber RNA-Seq qRT-PCR
  • 相关文献

参考文献26

  • 1徐楚年.棉花四个栽培种纤维发育早期扫描电镜的比较研究[J].北京农业大学学报,1987,13(3):254-261.
  • 2BASRA A S,Malik C P. Development of the cotton fiber[J]. Int Rev Cytol, 1984(89): 65-113.
  • 3ARPAT A B ,Waugh M,Sullivan J P,et al. Functional ge- nomics of cell elongation in developing cotton fibers [J]. Plant Molecular Biology, 2004,54(6): 911-929.
  • 4UDALL J A, Swanson J M,Haller K,et al. A global assembly of cotton ESTs[J]. Genome Research,2006,16(3): 441-450.
  • 5] LEE J J,Hassan O S ,Gao W, et al. Developmental and gene expression analyses of a cotton naked seed mutant [J]. Planta, 2006,223(3): 418-432.
  • 6SHI Yong-hui,Zhu Sheng-wei,Mao Xi-zeng,et al. Transcrip- tome profiling,molecular biological,and physiological studies reveal a major role for ethylene in cotton fiber cell elongation [J]. Plant Ce11,2006,18(3): 651-664.
  • 7WILK1NS T A,Apart A B. The cotton fibre transeriptome[J]. Physiologia Plantarum ,2005,124(3): 295-300.
  • 8WU Y R, Machado A C, White R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cot- ton[J]. Plant Cell Physiology,2006,47(1): 107-127.
  • 9WU Y R,Llewellyn D J,White R,et al. Laser capture microdis- section and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules[J]. Planta,2007,226(6): 1475-1490.
  • 10AL-GHAZI Y,Bouro S,Arioli T,et al. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality [J]. Plant Cell Physiology, 2009,50 (7): 1364- 1381.

二级参考文献13

  • 1JONES A M,Im K H,Savka M A,et al.Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1[J].Science,1998,282:1114-1117.
  • 2CHEN J G,Shimomura S,Folke S,et al.The role of auxin-binding protein 1 in the expansion of tobacco leaf cells[J].The Plant Journal,2001,28 (6):607-617.
  • 3CLEMENT T,Denise M,Michel W,et al.Molecular characterization and spatial expression of the sunflower ABP1 Gene[J].Plant Molecular Biology,2003,52:1025-1036.
  • 4HOU Z X,Huang W D.Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction[J].Planta,2005,222 (4):678-687.
  • 5HERTEL R,Thomson K,Russo V E A.in vitro auxin binding to particulate cell fractions from corn coleoptile[J].Planta,1972,107:325-340.
  • 6RAY P M,Dohrman U,Hertel R.Characterization of naphthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue[J].Plant Physiol,1977,59:357-364.
  • 7BATT S,Wilkins M B,Venis M A.Auxin binding to corn coleoptile membranes:kinetics and specificity[J].Planta,1976,130:7-13.
  • 8LOBLER M,Klambt D.Auxin-binding protein from coleoptile membranes of corn (Zea mays L.):purification by immunological[J].Biol Chem,1985,260:9848-9853.
  • 9RICHARD M N,Karine M D,Catherine P R.A short history of auxin-binding proteins[J].Plant Molecular Biology,2002,49:339-348.
  • 10WARWICKER J.Modelling of auxin-binding protein1 suggests that its C-terminus and auxin could compete for a binding site that incorporates a metal ion and tryptophan residue 44[J].Planta,2001,212:343-347.

共引文献9

同被引文献93

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部