期刊文献+

反平面变形下弱界面压电夹层结构的圣维南端部效应 被引量:2

SAINT-VENANT END EFFECT FOR ANTI-PLANE DEFORMATION OF PIEZOELECTRIC SANDWICH STRUCTURES WITH WEAK INTERFACES
原文传递
导出
摘要 研究了弱界面压电夹层结构在反平面变形下的圣维南端部效应。夹层结构的端部承受自平衡电弹载荷,上、下表面机械自由,但可以是电学短路或开路的。基于压电材料反平面变形的控制方程,利用边界和界面条件,得到了关于衰减率的特征方程。作为例子,给出了压电-弹性-压电和弹性-压电-弹性两种典型夹层结构的显式特征方程,并数值表明了界面性能、电边界条件和体积分数对衰减率的影响。 The decay of Saint-Venant end effect for the anti-plane deformation of a piezoelectric sandwich structure is paid attention to. The end of the sandwich structure is subjected to a set of self-equilibrated electro-elastic loads. The upper and lower surfaces of the sandwich structure are assumed to be traction-free and subjected to two kinds of electric boundary conditions, i.e. electrically short and electrically open. Based on the constitutive equation for anti-plane piezoelectricity and by using the boundary and interracial conditions, the characteristic equations for decay rate are derived. As examples, the explicit equations determining the decay rates are given for two types of the sandwich structures, i.e. piezoelectric-elastic-piezoelectric and elastic-piezoelectric- elastic ones. The numerical results show the effects of the electric boundary conditions, volume fraction and weak bonding on the decay rate.
作者 薛雁 刘金喜
出处 《工程力学》 EI CSCD 北大核心 2013年第6期41-46,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10972147) 长江学者和创新团队发展计划项目(IRT0971)
关键词 圣维南原理 衰减率 压电夹层结构 反平面变形 弱界面 Saint-Venant end effects decay rate piezoelectric sandwich structure anti-plane deformation weak interface
  • 相关文献

参考文献17

  • 1张福学,王丽坤.现代压电学[M].北京:科学出版社,2005:106-137.
  • 2匡震邦.电弹性理论[M].上海:上海交通大学出版社,2011:300一331.
  • 3Horgan C O, Knowles J K. Recent developments concerning Saint-Venant's principle [J]. Advances in Applied Mechanics, 1983, 23: 179--269.
  • 4Horgan C O. Recent developments concerning Saint- Venant's principle: An update [J]. Applied Mechanics Reviews, 1989, 42: 295--303.
  • 5Horgan C O. Recent developments concerning Saint- Venant's principle: A second update [J]. Applied Mechanics Reviews, 1996, 49(Suppl): 101 -- 111.
  • 6Fan H. Decay rates in a piezoelectric strip [J]. International Journal of Engineering Science, 1995, 33: 1095-- 1103.
  • 7Ruan X P, Danforth S C, Safari A, Chou T. Saint-venant end effects in piezoceramic materials [J]. Intemational Journal of Solids and Structures, 2000, 37:2625--2637.
  • 8Borrelli A, Horgan C O, Patria M C. Saint-venant end effects for plane deformations of linear piezoelectric solids [J]. International Journal of Solids and Structures, 2006, 43: 943--956.
  • 9Tam J Q, Huang L J. Saint-venant end effects in multilayered piezoelectric laminates [J]. International Journal of Solids and Structures, 2002, 39: 4979--4998.
  • 10Borrelli A, Horgan C O, Patria M C. Saint-venant end effects in anti-plane shear for classes of linear piezoelectric materials [J]. Journal of Elasticity, 2001, 64: 217--236.

同被引文献15

  • 1ZHONG Xian-ci, LI Xian-fang, Lee Kang-yong. Analysis of a mode-I crack perpendicular to an imperfect interface [J 1. International Journal of Solids and Structures, 2009, 46(6) :1456-1463.
  • 2Chen W Q, Lee K Y. Exact solution of angle-ply piezoelectric laminates in cylindrical bending with intedacial imperfections [J]. Composite Structures, 2004, 65(3-4) :329-337.
  • 3LI Yong-dong, Lee Kang-yong. The shielding effect of the imperfect interface on a mode III permeable crack in a layered piezoelectric sensor E J "1. Engineering Fracture Mechanics, 2009, 76 (7) : 876- 883.
  • 4WANG Xue, Ang Whye-teong, FAN Hui. Micro- mechanics models for an imperfect interface under anti-plane shear load: Hypersingular integral formulations [ J 1. Engineering Analysis with Boundary Elements, 2012, 36(12) : 1856-1864.
  • 5ZHOU Zhen-huan, XU Xin-sheng, Leung A Y T, et al. Stress intensity factors and T-stress for an edge interface crack by symplectic expansion [J]. Engineering Fracture Mechanics, 2013, i02: 334- 347.
  • 6XU Xin-sheng, CHENG Xian-he, ZHOU Zhen- huan, et al. An analytical approach for the mixed- mode crack in linear viscoelastic media [J-1. European Journal of Mechanics-A/Solids, 2015, 52 : 12-25.
  • 7Leung A Y T, XU Xin-sheng, ZHOU Zhen-huan, et al. Analytic stress intensity factors for finite elastic disk using symplectic expansion [J 7. Engineering Fracture Mechanics, 2009, 76 ( 12 ) : 1866-1882.
  • 8Wu X R. The arbitrarily loaded single-edge cracked circular disc; accurate weight function solutions [ J 7. International Journal of Fracture, 1991, 49(4) :239-256.
  • 9ZHONG Wan-xie. Duality System in Applied Mechanics and Optimal Control [M~. Boston: Kluwer Academic Publishers, 2004.
  • 10王正明.高精度守时对原子钟性能的要求[J].天文学进展,2008,26(3):288-295. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部