期刊文献+

基于功率合成技术的V波段倍频源

V-Band Frequency Source Based on Power Synthesis Technology
下载PDF
导出
摘要 赫兹倍频链通过对低频段微波信号多次倍频,可以获得高稳定、低相位噪声的太赫兹频率源,应用前景广阔。倍频链越高频,需要驱动功率越不容易达到,为提高V波段倍频链功率,尝试了倍频功率合成方法,该方式与放大器功率合成相比,具有相位差影响和频率加倍的特点。研制出了V波段4路倍频源,对倍频合成工作原理、倍频效率和高次谐波抑制效果进行了验证。测试结果表明:在66~75GHz范围内,V波段倍频器均可获得20dBm以上的2次谐波倍频功率输出,最大功率为24dBm,带内波动约为4dB,功率合成效率大于85%。 Through the multiple frequency amplification, THz multiplier chain can obtain high stability, low phase noise terahertz signal from the low frequency microwave signal. In order to improve the power of the V-band frequency source, 4-way multiplier power combining was proposed. Combining analysis of electromagnetic field theory and three-dimen-sional electromagnetic simulation software HFSS and ADS, the design performance and efficiency of the source were ana-lyzed. The experimental results show that output power is above 20dBm in range of 66-75GHz, the maximum power is 24dBm, and the synthetic efficiency is above 85%.
出处 《微波学报》 CSCD 北大核心 2013年第3期40-43,47,共5页 Journal of Microwaves
关键词 太赫兹 倍频 功率合成 V波段倍频源 高次谐波 高阶模式 合成效率 THz,multiple frequency, power synthesis, V-band frequency source, higher-order harmonics, higher-or-der mode, synthetic efficiency
  • 相关文献

参考文献7

  • 1Siegel P H. Terahertz technology [ J]. IEEE Trans on Mi-crowave Theory and Techniques, 2002 , 50(3) : 910-928.
  • 2王成,林长星,邓贤进,肖仕伟.140GHz高速无线通信技术研究[J].电子与信息学报,2011,33(9):2263-2267. 被引量:21
  • 3Pozar D M.微波工程[M].北京:电子工业出版社,2006:363-367.
  • 4Young L. Synchronous branch guide directional couplersfor low and high power application [ J ]. Microwave Theo-ry and Techniques, 1962,10(6) :459-475.
  • 5Gupta M S. Degradation of power combining efficiencydue to variability among signal sources [ J ]. IEEE Transon Microwave Theory and Techniques, 1992, 40 (5 ):1031-1034.
  • 6谢小强,刘晓,徐锐敏.Ka波段25W固态功率合成放大器[J].红外与毫米波学报,2011,30(4):347-349. 被引量:16
  • 7褚庆昕,康智勇,龚志.Ka波段波导二进制空间功率合成放大器[J].微波学报,2012,28(1):44-48. 被引量:3

二级参考文献28

  • 1Jeong J, Kwon Y, Deakin D S, et al. 44 GHz waveguidebased power amplifier module using double antipodal finline transitions[ J]. Electronics Letters ,2002,38( 3 ) : 128 - 129.
  • 2Jiang X, Ortiz S C, Mortazawi A. A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide circuit [ J ]. IEEE Trans. Microw. Theory Tech. ,2004,52(2) :633 - 639.
  • 3Li L A,. Hilliard B J,. Sharer J R, et al. A planar compatible traveling-wave waveguide-based power divider/combiner [ J ]. IEEE Trans. Microw. Theory Tech. , 2008,56 ( 8 ) : 1889 - 1998.
  • 4Wells J. Faster t.han fiber the future of multi-Gb/s wireless. IEEE Micrmvave Magazine, 2009, 10(3): 104 122.
  • 5Dyadyuk V, Bunton J D, Pathikulangara J, et al.. A multigigabit millimeter-wave communication system with improved spectral efficiency. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12): 2813-2821.
  • 6Kukutsu T, Hirata A, Kosugi T, et al.. 10-Gbit/s wireless transmission systems using 120-GHz-band photodiode and MMIC technologies. Compound Semiconductor Integrated Circuit Symposium, Greensboro, NC, Oct. 11-14, 2009: 1-4.
  • 7Kosugi T, Hirata A, Nagatsuma T, et al.. MM-wave long-range wireless systems. IEEE Microwave Magazine, 2009, 10(2): 68-76.
  • 8Hirata A, Yamaguchi R, Kosugi T, et al.. 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(5): 1102 1109.
  • 9Jastrow C, Munter K, Piesiewicz R, et al.. 300 GHz channel measurement and transmission system. 33rd International Conference on Infared, Millimeter and Terahertz Waves, Pasadena, CA, Sept. 15-19, 2008: 1-2.
  • 10Thmnas B, Maestrini A, Gill J, et al.. A broadband 835 900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1917-1924.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部