期刊文献+

基于稀疏恢复的循环平稳信号DOA估计

DOA Estimation Method for Cyclostationary Signals Based on Signal Sparse Recovering
下载PDF
导出
摘要 基于信号稀疏恢复的思想,提出了一种新的循环非相关平稳信号DOA估计算法。首先,对阵列的二阶循环互相关矩阵矢量化,并将感兴趣的空间划分成若干段以构造过完备的方向矩阵,从而得到基于Khatri-Rao积的稀疏模型;其次,利用凸优化技术对稀疏模型进行优化求解,并根据恢复得到的稀疏信号中非零元素的位置估计出高精度的DOA值。与传统的循环互相关算法比较,本文算法具有更高的DOA估计精度,同时也适用于信号个数多于阵元个数的场合。理论分析和仿真实验结果都验证了算法的有效性。 Based on the idea of signal sparse recovering, a new direction of arrival (DOA) estimation method is pro-posed for uncorrelated cyclostationary signals. Firstly, by applying vectorization on the second order cyclic autocorrelation matrix of the array and by dividing the space of interest into several sectors to construct the overcomplete direction matrix, the sparse model for cyclostationary signal based on Khatri-Rao product is obtained. Then, by applying the convex technique to the model, the DOA values with high precision are estimated according to the poison of nonzero elements of the restored sparse signal. Compared with the conventional cyclic method, the proposed method has higher precision, and is also suitable to the scenario that the number of signals is more than that of arrays. The validity of the method is supported by simulation re-suits.
出处 《微波学报》 CSCD 北大核心 2013年第3期68-71,共4页 Journal of Microwaves
关键词 循环平稳信号 循环互相关矩阵 Khatri—Rao积 稀疏信号模型 凸优化 DOA估计 cyclostationary signal, cyclic autocorrelation matrix, Khatri-Rao product, sparse signal model, convexoptimization, direction of arrival estimation
  • 相关文献

参考文献11

  • 1Schell S V,Gardner W A,Agee B G. Cyclic MUSIC al-gorithms for signal - selective direction estimation [ A ].Proceedings of IEEE[C],1989 (5) : 2278-2281.
  • 2Guanghan X. Direction of arrival estimation via exploita-tion of cyclostationarity - a combination of temporal andspatial processing [ J]. IEEE Transactions on Signal Pro-cessing, 1992, 40(7) : 1775-1785.
  • 3Bascal C, Yide W, Joseph S. Cyclostationarity-exploitingdirection finding algorithms [ J ]. IEEE Transactions onAerospace and Electronic systems, 2003, 39(3) : 1051-1056.
  • 4Donoho D L. Compressive sampling[ J]. IEEE Transac-tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 5顾福飞,池龙,张群,罗迎,朱丰.稀疏阵列L型MIMO雷达运动目标三维成像方法[J].微波学报,2012,28(3):90-96. 被引量:6
  • 6Gorodnitsky I,Rao B, Wakin M B. Sparse signal recon-struction from limited data using Focuss: A re-weightedminimum norm algorithm [ J]. IEEE Transactions on Sig-nal Processing, 1997,45(3) : 600-616.
  • 7Mailioutov D, Cetin M, Willsky A. A sparse signal re-construction perspective for source localization with sensorarrays [ J ]. IEEE Transactions on Signal Processing,2005, 53(8) : 3010-3022.
  • 8Hyder M M,Mahata K. Direction-of-anival estimation u-sing a mixed 1-2 norm approximation [ J ]. IEEE Transac-tions on Signal Processing, 2010,58(9) : 4646-4655.
  • 9贺亚鹏,李洪涛,王克让,朱晓华.基于压缩感知的高分辨DOA估计[J].宇航学报,2011,32(6):1344-1349. 被引量:32
  • 10Schmidt R. Multiple emitter location and signal parameterestimation[ J] . IEEE Transactions on Antennas Propaga-tion, 1986,34(3): 276-280.

二级参考文献29

  • 1Krim H, Viberg M. Two decades of array signal processing research: the parametric approach [ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 - 509.
  • 3Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006, 59(8 ) : 1207 -1223.
  • 4Candes E J. Compressive sampling[ C ]. International Congress of Mathematicians, Madrid, Spain, August 22- 30, 2006.
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 - 1306.
  • 6Candes E J, Wakin M B. An introduction to compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21 -30.
  • 7Romberg J. Imaging via compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 14 - 20.
  • 8Paredes J L, Arcw G R, Wang Z M. Uhra-Wideband compressed sensing: channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3) :383 -395.
  • 9Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53 (8) : 3010 -3022.
  • 10Gurbuz A C, McClellan J H. A compressive beamforming method [ C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, USA, March 30 -April 4, 2008.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部