期刊文献+

ZrO_2纤维/莫来石轻质复合材料的凝胶注模制备及其增韧机理研究 被引量:1

Preparation of Zirconia Fiber/Mullite Light-weighted Composites Derived Through Gel-casting and Its Toughening Mechanism
下载PDF
导出
摘要 采用凝胶注模成型工艺制备了ZrO2纤维增韧莫来石复合陶瓷材料。借助透射电子显微镜(TEM)、扫描电子显微镜(SEM)、平板导热仪、单边切口梁法(SENB)等测试手段对样品微观形貌、导热系数、断裂韧性等进行研究;研究了分散剂对凝胶注模浆料团聚体的影响;讨论了ZrO2纤维增韧莫来石复合材料的增韧机理;概述了同时获得高韧性和高强度材料的途径。结果表明:添加ZrO2纤维能够明显提高莫来石的断裂韧性;当ZrO2纤维添加量(体积分数)为25%左右时可使莫来石轻质耐火复合材料兼具较低的热导率(λ=0.35 W.m-1.K-1,298K)和优异的综合力学性能(KIC=7.6MPa.m1/2,σb=270MPa)。 Zirconia fiber/muUite light-weighted composites were prepared by gel-casting technique. The micro- structure, thermal conductivity and fracture toughness were characterized by means of transmission electron micro- scope (TEM), scanning electron microscope(SEM), plane table thermo-conductivity meter and single edge notched beam (SENB), etc. Effect of dispersing agent on agglomeration in gel-casting slurry was studied. The toughening mechanism of mullite light-weighted composites toughened by zirconia fiber was discussed. And the balance of high fracture toughness and high tensile strength were summarized. The results show that adding alumina fiber can advance the fracture toughness of mullite light-weighted composites significantly. The low thermal conductivity(λ=0.35W·m^-1·K^-1, 298K) and high fracture toughness (KIC=7.6 MPa·m^1/2,σb=270 MPa) were obtained simultaneously when the adding quantity of zirconia fiber was controlled around 25 vol%.
出处 《材料导报(纳米与新材料专辑)》 EI 2013年第1期367-371,共5页
基金 江苏省星火计划重点支撑项目(YC110427)
关键词 凝胶注模 ZrO2纤维 增韧机理 莫来石 gel casting, zirconia fiber, toughening mechanism, mullite
  • 相关文献

参考文献14

  • 1安宇龙,刘光,侯国梁,陈建敏,赵晓琴.大气等离子喷涂制备莫来石涂层的性能[J].材料导报,2011,25(2):36-39. 被引量:3
  • 2Chawla K K. Interface engineering in mullite fiber/mullite matrix composites[J]. J Eur Ceram Soc,2008,28 (2) :447.
  • 3陈照峰,张立同,成来飞,徐永东.化学法合成莫来石粉料研究进展[J].材料导报,2002,16(3):34-37. 被引量:3
  • 4Kriven W M, et al. Toughening of mullite/cordierite lami- nated composites by transformation weakening of beta-cris- tobalite interphases [J]. J Am Ceram SOc, 2005,88(6) : 1521.
  • 5Song G M, Zhou Y,Sun Y. Modeling of fiber toughening in fiber-reinforced ceramic composites [J]. Ceram Int, 1999,25 (3):257.
  • 6Pan Wei, Gong Jianghong. Microstructures and multi-toug- hening of ZrOz nano-micron fibers self-toughening AI2 03 ce- ramics from in situ growth in the melts produced by com- bustion synthesis [J]. Key Eng Mater, 2007,336-338:2257.
  • 7Nourbakhsh S, Sahin O, Rhee W H, et al. Microstructural characterization of a zirconia-toughened alumina fiber rein- forced niobium aluminide composite [J]. Acta Metall Ma- ter, 1992,40 (2) : 285.
  • 8Hummer E, Lu X, Rettelbach Th, et al. The application of the single-edge notched beam to fracture toughness testing of ceramics [J]. J Test Evaluat, 1974,2(6) : 503.
  • 9Chiang Yih-Cherng. On fiber debonding and matrix cracking in fiber-reinforced ceramics[J]. Compos Sci Techn, 2001, 61 (12) : 1743.
  • 10Boccaccini A R, Atiq S, Boccaccini D N, et al. Fracture be- haviour of muliite fibre reinforced-mullite matrix composites under quasi-static and ballistic impact loading[J]. Compos Sci Techn,2005,65(2) : 325.

二级参考文献42

共引文献22

同被引文献29

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部