期刊文献+

Sparse representation-based color visualization method for hyperspectral imaging

基于高光谱图像稀疏表示的彩色可视化模型(英文)
下载PDF
导出
摘要 In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on. 提出一种对整幅高光谱图像的稀疏表示结果进行直接显示的方法,图中不仅包含了稀疏表示中保留的光谱信息,还可显示整幅图像的空间信息。稀疏表示后,将字典中的各有效原子根据光谱特性选择颜色标签,之后根据稀疏系数进行混合颜色显示,此时的图像能够同时满足可分性及距离保持特性。针对局部地物时,提出的单像素混合阵列表示法及改进的裂片纹理技术能够直观且完整的显示出每个像元的具体组成情况,还能够根据所生成图像中的信息对原始HSI进行重建,进而提高数据的利用率。该模型不仅能够良好地显示地物的空间特性,同时能够显示稀疏系数的组成,同时单像素混合阵列表示法及裂片纹理技术弥补了混合像素彩色显示中颜色表达混乱的弊端。对真实地物数据进行实验,结果证明该模型产生的彩色图像具有良好的视觉效果及可分性,满足距离保持特性。
机构地区 哈尔滨工程大学
出处 《Applied Geophysics》 SCIE CSCD 2013年第2期210-221,237,共13页 应用地球物理(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No.61275010,61077079) the State Key Program of National Natural Science Foundation of Heilongjiang Province of China (No.ZD201216) the Fundamental Research Funds for the Central Universities (No.HEUCF130820)
关键词 HYPERSPECTRAL color visualization sparse representation multilayer visualization 稀疏表示 彩色显示 可视化方法 光谱成像 可视化模型 光谱图像 混合像素 高光谱数据
  • 相关文献

参考文献25

  • 1Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2010, Alternating direction algorithms for constrained sparse regression: application to hyperspectralunmixing: 2h Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Raykjavik, June 14- 16, 1 -4.
  • 2Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., and Chanussot, J., 2012, Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches: Selected Topics in Applied Earth Observations and Remote Sensing, fi(2), 354 - 379.
  • 3Cai, S., Du, Q., and Moorhead, R., 2007, Hyperspectral imagery visualization using double layers: Transactions on Geoscience and Remote Sensing, 45(10), 3028 - 3036.
  • 4Cai, S., Du, Q., and Moorhead, R., 2010, Feature- driven multilayer visualization for remotely sensed hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 48(9), 3471 - 3481.
  • 5Charles, A. S., Olshausen, B. A., and Rozell, C. J., 2011, Learning Sparse Codes for Hyperspectral Imagery: Journal of Selected Topics in Signal Processing, 5(5), 963 - 78.
  • 6Coello, C. A. C., Pulido, G. T., and Lechuga, M. S., 2004, Handling multiple objectives with particle swarm optimization: Evolutionary Computation, 8(3), 256 - 279.
  • 7Cui, M., Razddan, A., Hu, J., and Wonka, P., 2009, Interactive hyperspectral image visualization using convex optimization: Transactions on Geoscience and Remote Sensing, 47(6), 1673 - 1684.
  • 8Du, Q., Raksuntorn, N., Cai, S., and Moorhead, R., 2008, Color display for hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 46(6), 1858 - 1866.
  • 9Erard, S., Drossart, P., and Piccioni, G., 2009, Multivariate analysis of visible and infrared thermal imaging spectrometer (virtis) venus express night side and limb observations: Journal of Geophysical Research, 114(E9), 1 - 20.
  • 10Gomez, C., Borgne, H.L., Allemand, P., Delacourt, C., and Ledru, P., 2007, N-FindR method versus independent component analysis for litho-logical identification in hyperspectral imagery: International Journal of Remote Sensing, 28(23), 5315 -5338.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部