期刊文献+

基于下三角H矩阵的LDLC整形研究

Shaping method for low-density lattice codes based on lower triangular matrix
下载PDF
导出
摘要 针对低密度格码(LDLC)编码后不能适应在功率限制的加性高斯白噪声(AWGN)信道上传输的问题,研究了编码前的整形问题。构造了一种特殊结构的下三角H矩阵,并结合超立方整形和系统整形方案,分析并仿真了整形前后格点的变化及取得的整形增益。结果显示:整形后的码字沿格的Voronoi域均匀分布,并当码长为10000、误码率为10-5时,可得到1.31 dB的整形增益,相对于传统的整形技术提高了0.31 dB。通过整形,有效地产生了功率受限的格点。 To solve the problem that Low Density Lattice Codes (LDLC) cannot be used on the constrained power communication Additive White Gaussian Noise (AWGN) channel, the shaping methods were studied. In this paper, a lower triangular Hmatrix with a special structure was constructed first, together with the hypercube and systematic shaping method, and then the average power was fixed, the position change of lattice point before and after the shaping process, and its corresponding shaping gain were analyzed. The simulation results show that the codeword is uniformly distributed within the Voronoi regions of the lattice after shaping, and these shaping methods can achieve a shaping gain of 1.31dB when Symbol Error Rate (SER) 10 -5 and code length 10000 which improves 0.31dB compared with the traditional shaping technique. Power limited lattice points were generated efficiently after shaping.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1836-1838,共3页 journal of Computer Applications
关键词 低密度格码 格点 超立方整形 系统整形 Low Density Lattice Codes (LDLC) lattice point hypercube shaping systematic shaping
  • 相关文献

参考文献13

  • 1贺玉成.格及其编码和译码[J].西安电子科技大学学报,1990,17(1):70-78. 被引量:2
  • 2SOMMER N, FEDER M, SHALVI O. Low density lattice codes [ J]. IEEE Transactions on Information Theory, 2008, 54(4) : 1561 - 1585.
  • 3KURKOSKI B M, DAUWELS J. Message-passing decoding aLgo- rithm of low-density lattice codes with Gaussian approximation [ C]//Proceedings of 2012 IEEE International Conference on Wire- less Information Technology and Systems. Washington, DC: IEEE Computer Society, 2012:1 -4.
  • 4YONA Y, FEDER M. Efficient parametric decoder of low density lattice codes [ C]//Proceedings of 2009 IEEE International Sympo- sium on Information Theory. Washington, DC: IEEE Computer So- ciety, 2009:744-748.
  • 5YONA Y, FEDER M. Max-product algorithm for low density lattice codes [ C]//Proceedings of 2012 IEEE International Symposium on Information Theory. Washington, DC: IEEE Computer Society, 2012:1727 - 1731.
  • 6UCHIKAWA H, KURKOSKI B M, KASAI K, et al. Iterative enco- ding with Gauss-Seidel method for spatially-coupled low-density lat- tice codes [C]// Proceedings of 2012 IEEE International Symposi- um on Information Theory. Washington, DC: IEEE Computer Socie- ty, 2012:1737 - 1741.
  • 7KURKOSHI B M, DAUWELS J. Reduced-memory decoding of low- density lattice codes [ J]. IEEE Communications Letters, 2010, 14 (7) : 659 -661.
  • 8FORNEY G D, Jr, UNGERBECK G. Modulation and coding for linear Gaussian channels [ J]. IEEE Transactions on Information Theory, 1998, 44(6) : 2384 -2408.
  • 9王晓松,常贵然.下一代无线通信系统中调制与编码关键技术研究[D].沈阳:东北大学,2009.
  • 10KURKOSKI B M, LOELIGER H A. Power-constrained communica- tions using LDLC lattices [ C]//Proceedings of 2009 IEEE Interna- tional Symposium on Information Theory. Washington, DC: IEEE Computer Society, 2009:739 - 743.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部