期刊文献+

用于多分类问题的最小二乘支持向量分类—回归机 被引量:2

Least square support vector classification-regression machine for multi-classification problems
下载PDF
导出
摘要 基于支持向量机(SVM)的三分类方法是处理多分类问题的一类方法。提出了最小二乘支持向量分类回归机(LSSVCR)算法,通过最小二乘目标函数充分考虑所有样本点对分类的影响,使得训练集中即使有个别样本点被标错类别,对分类结果也不会产生太大的影响,从而提高分类的准确性。该方法能够提高分类的准确率和分类速度,同时算法对于不同类别间样本数目差异较大的情况也有很好的分类效果。数值实验结果表明所提算法是可行的,且与已有的三分类算法相比在分类准确性上平均提高了2.57%,在运算速度上也有了较大的提高。 Tri-class classification method based on Support Vector Machine (SVM) is a kind of method for solving multi-class classification problems. Least Square Support Vector Classification-Regression (LSSVCR) was proposed, which considered the effects of all the sample points by using least squares objective function. Even if there were wrongly marked sample points in the training set, the result would not be affected largely by them. LSSVCR was more accurate and faster, and it was efficient for the problems that there are large differences among the number of sample points in different classes. The numerical experiments show that the proposed method raises the accuracy by 2.57% on average compared to the existing tri-classification methods.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1894-1897,1911,共5页 journal of Computer Applications
基金 国家自然科学基金青年基金资助项目(11101028)
关键词 多分类问题 三分类问题 最小二乘支持向量机 分类-回归机 一对一对多方法 multi-class classification problem tri-class classification problem Least Square Support Vector Machine (LSSVM) classification-regression machine one versus one versus rest (1-v-1-v-r) method
  • 相关文献

参考文献13

  • 1CORTES C, VAPNIK V. Support vector networks [ J]. Machine Learning, 1995, 20(3) : 273 - 297.
  • 2VAPNIK V. The nature of statistical learning theory [ M]. New York: Springer, 1995.
  • 3DIErlTERICH T G, BAKIRI G. Solving multiclass learning prob- lems via error-correcting output codes [ J]. Journal of Artificial Intel- ligence Research. 1995.2( 1) : 263 -286.
  • 4唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 5余辉,赵晖.支持向量机多类分类算法新研究[J].计算机工程与应用,2008,44(7):185-189. 被引量:36
  • 6HSU C W, LIN C J. A comparison of methods for multiclass support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415 -425.
  • 7ANGULO C, PARRA X, CATALA A. K-SVCR. A support vector machine for multi-class [ J]. Neurocomputing, 2003, 55(1/2) : 57 - 77.
  • 8ZHONG P, FUKUSHIMA M. A new multi-class support vector algo- rithm [ J]. Optimization Methods and Software, 2006, 21 (3) : 359 - 372.
  • 9XU Y T, WU C. A total multi-class support vector machine [ J].Journal of Information and Computational Science, 2011, 8(7): 1147 - 1154.
  • 10ANGULO C, RUIZ F J, GONZALEZ L, et al. Multi-classification by using tri-class SVM [ J]. Neural Processing Letters, 2006, 23(1) : 89 - 101.

二级参考文献27

  • 1朱远平,戴汝为.基于SVM决策树的文本分类器[J].模式识别与人工智能,2005,18(4):412-416. 被引量:24
  • 2孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 3Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Bottou L, Cortes C, Denker J, et al. Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition[A]. Proc of the Int Conf on Pattern Recognition[C]. Jerusalem,1994:77-87.
  • 5Platt J, Cristianini N, Shawe-Taylor J. Large Margin DAG's for Multiclass Classification[A]. Advances in Neural Information Processing Systems 12[C]. Cambridge, MA: MIT Press, 2000: 547-553.
  • 6Hsu C, Lin C. A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.
  • 7Takahashi F, Abe S. Decision-Tree-Based Multiclass Support Vector Machines[A]. Proc of the 9th Int Conf on Neural Information Processing[C]. Singapore, 2002,(3):1418-1422.
  • 8Sungmoon C, Sang H O, Soo-Young L. Support Vector Machines with Binary Tree Architecture for Multi-Class Classification[J]. Neural Information Processing-Letters and Reviews, 2004, 2(3):47-51.
  • 9Michie D, Spiegelhalter D, Taylor C. Machine Learning, Neural and Statistical Classification[DB/OL]. http://www.liacc.up.pt/ML/statlog/datasets.html.1994.
  • 10Hsu Chih-Wei,Lin Chih-Jen.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks, 2002,13(2) :415-425.

共引文献124

同被引文献22

  • 1Cortes C,Vapnik V.Support vector networks[J],Machine Learning,1995,20(3):273-297.
  • 2Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 3Hastie T,Tibshirani R.Classification by pairwise cou- pling[J].The Annals of Statistics,1998,26(2):451-471.
  • 4Dietterich T G,Bakiri G.Solving multiclass learning problems via error-correcting output codes[J].Journal of Artificial Intelligence Research,1995,2(1):263-286.
  • 5Angulo C,Parra X,Catala A.K-SVCR.A Support vector machine for multi-class[J].Neurocomputing,2003,55(1-2):57-77.
  • 6Zhong P,Fukushima M.A new multi-class support vector algorithm[J].Optimization Methods and Soft- ware,2006,21(3):359-372.
  • 7Xu Y T,Wu C.A total multi-class support vector ma- chine[J].Journal of Information Computational Sci- ence,2011,8(7):1147-1154.
  • 8Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Trans- actions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
  • 9Qi Z J,Tian Y J,Shi Y.Robust twin support vector machine for pattern classification[J].Pattern Recog- nition,2012,46(1):305-316.
  • 10Xu Y T,Guo R,Wang L S.A twin multi-class clas- sification support vector machine[J].Cognitive Com- putation,2013,5(4):580-588.

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部