期刊文献+

基于指令距离的存储相关性预测方法

Memory dependence prediction method based on instruction distance
下载PDF
导出
摘要 存储相关性预测对于减少存储相关性冲突、提高微处理器性能具有十分重要的作用。针对传统相关性预测器硬件开销大、可实现性较差的缺点,通过对存储相关性的局部性分析,提出了一种基于指令距离的存储相关性预测方法。该方法充分利用了发生存储相关性冲突的指令在指令距离上的局部性,预测冲突指令的指令距离,进而控制部分访存指令的发射时机,大大减少了存储相关性冲突的次数。实验结果表明,在硬件开销约为1 KB的情况下,使用基于指令距离的相关性预测器后,每个时钟周期平均执行的指令数可以提高1.70%,最高可以提高5.11%。在硬件开销较小的情况下,较大程度提高了微处理器的性能。 Memory dependence prediction plays a very important role to reduce memory order violation and improve microprocessor performance. However, the traditional methods usually have large hardware overhead and poor realizability. Through the analysis of memory dependence's locality, this paper proposed a new memory predictor based on instruction distance. Compared to other memory dependence predictors, this predictor made full use of memory dependence's locality on instruction distance, predicted memory instruction' violation distance, controlled the speculation of a few instructions, finally deduced the number of memory order violation and improved the performance. The simulation results show that with only 1KB hardware budget, average Instruction Per Cycle (IPC) get a 1.70% speedup, and the most improvement is 5.11%. In the case of a small hardware overhead, the performance is greatly improved.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1903-1907,共5页 journal of Computer Applications
关键词 指令级并行 访存指令 存储相关性预测 指令距离 Instruction Level Parallelism (ILP) memory instruction memory dependence prediction instruction distance
  • 相关文献

参考文献13

  • 1CRISTAL A, SANTANA O J, VALERO M, et al. Toward kilo-in- struction processors [ J]. ACM Transactions on Architecture and Code Optimization, 2004, 1(4): 389-417.
  • 2SUBRAMANIAM S. Improving processor eciency by exploiting common-case behaviors of memory instructions [ D]. Atlanta: Geor- gia Institute of Technology, 2009.
  • 3SHA T. Exploiting aggressive memory dependence speculation to simplify the store-load datapath [ D]. Philadelphia: University of Pennsylvania, 2011.
  • 4LIPASTI M H, SHEN J P. The performance potential of value and dependence prediction [ C]// Proceedings of the 3rd International Euro-Par Conference on Parallel Processing. Berlin: Springer, 1997:1043 - 1052.
  • 5MOSHOVOS A, BREACH S E, VIJAYKUMAR T N, et al. Dy- namic speculation and synchronization of data dependencies [ J]. ACM SIGARCH Computer Architecture News, 1997, 25(2) : 181 -.
  • 6MOSHOVOS A. Memory dependence prediction [ D]. Madison: U- niversity of Wisconsin, 1998.
  • 7CHRYSOS G Z, EMER J S. Memory dependence prediction using store sets [ C]//Proceedings of the 25th Annual International Sym- posium on Computer Architecture. Washington, DC: IEEE Comput- er Society, 1998:142 - 153.
  • 8SUBRAMANIAM S, LOH G H. Store vectors for scalable memory dependence prediction and scheduling [ C]// Proceedings of the 12th International Symposium on High Performance Computer Archi- tecture. Atlanta, GA: Conference Publications, 2006:64-75.
  • 9STONE S S, WOLEY K M, FRANK M I. Address-indexed memory disambiguatian and store-to-load forwarding [ C]// Proceedings of the 38th Annual IEEE/ACM International Symposium on Microar- chitecture. Washington, DC: IEEE Computer Society, 2005:171 - 182.
  • 10KESSLER R E. The Alpha 21264 microprocessor [ J]. IEEE Micro Magazine, 1999, 19(2) : 24 -36.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部