期刊文献+

基于自组织映射的流形学习与可视化 被引量:2

Manifold learning and visualization based on self-organizing map
下载PDF
导出
摘要 针对自组织映射(SOM)在学习和可视化高维数据内在的低维流形结构时容易产生"拓扑缺陷"的这一问题,提出了一种新的流形学习算法——动态自组织映射(DSOM)。该算法按照数据的邻域结构逐步扩展训练数据集合,对网络进行渐进训练,以避免局部极值,克服"拓扑缺陷"问题;同时,网络规模也随之动态扩展,以降低算法的时间复杂度。实验表明,该算法能更加真实地学习和可视化高维数据内在的低维流形结构;此外,与传统的流形学习算法相比,该算法对邻域大小和噪声也更加鲁棒。所提算法的网络规模和训练数据集合都将按照数据内在的邻域结构进行同步扩展,从而能更加简洁并真实地学习和可视化高维数据内在的低维流形结构。 Self-Organizing Map (SOM) tends to yield the topological defect problem when learning and visualizing the intrinsic low-dimensional manifold structure of high-dimensional data sets. To solve this problem, a manifold learning algorithm, Dynamic Self-Organizing MAP (DSOM), was presented in this paper. In the DSOM, the training data set was expanded gradually according to its neighborhood structure, and thus the map was trained step by step, by which local minima could be avoided and the topological defect problem could be overcome. Meanwhile, the map size was increased dynamically, by which the time cost of the algorithm could be reduced greatly. The experimental results show that DSOM can learn and visualize the intrinsic low-dimensional manifold structure of high-dimensional data sets more faithfully than SOM. In addition, compared with traditional manifold learning algorithms, DSOM can obtain more concise visualization results and be less sensitive to the neighborhood size and the noise, which can also be verified by the experimental results. The innovation of this paper lies in that DSOM expands the map size and the training data set synchronously according to its intrinsic neighborhood structure, by which the intrinsic low-dimensional manifold structure of high-dimensional data sets can be learned and visualized more concisely and faithfully.
作者 邵超 万春红
出处 《计算机应用》 CSCD 北大核心 2013年第7期1917-1921,1934,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202285) 河南省基础与前沿技术研究项目(112300410201) 河南省教育厅科学技术研究重点项目基础研究计划(13B520899)
关键词 流形学习 自组织映射 拓扑缺陷 局部欧氏性 邻域结构 manifold learning Self-Organizing Map (SOM) topological defect locally Euclidean nature neighborhood structure
  • 相关文献

参考文献23

  • 1KOHONEN T. Self-organized formation of topologically correct fea- ture maps [J]. Biological Cybernetics, 1982, 43(1): 59-69.
  • 2THALAMUTHU A, MUKHOPADHYAY I, ZHENG X, et al. Eval- uation and comparison of gene clustering methods in microarray anal- ysis[J]. Bioinformatics, 2006, 22 (19) : 2405 -2412.
  • 3GHOUILA A, YAHIA S B, MALOUCHE D, et al. Application of Multi-SOM clustering approach to macmphage gene expression anal- ysis[J]. Infection, Genetics and Evolution, 2009, 9(3): 328- 336.
  • 4王丽敏,梁艳春,韩旭明,时小虎,李明.多获胜节点SOM及其在股票分析中的应用[J].计算机研究与发展,2008,45(9):1493-1500. 被引量:2
  • 5SIMILA T. Self-organizing map learning nonlinearly embedded man- ifoldsf J]. Information Visualization, 2005, 4(1) : 22 -31.
  • 6万春红,邵超.一种新的基于自组织映射的流形学习算法[J].北京交通大学学报,2009,33(6):101-105. 被引量:2
  • 7SEUNG H S, LEE D D. The manifold ways of perception[ J]. Sci- ence, 2000, 290(5500): 2268-2269.
  • 8TENENBAUM J B, de SILVA V, LANGFORD J C. A global geo- metric framework for nonlinear dimensionality reduction [ J]. Sci- ence, 2000, 290(5500): 2319-2323.
  • 9杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 10王耀南,张莹,李春生.基于核矩阵的Isomap增量学习算法研究[J].计算机研究与发展,2009,46(9):1515-1522. 被引量:5

二级参考文献90

  • 1詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537. 被引量:24
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 4Tenenbaum J, SilvaV, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.
  • 5Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500) : 2323-2326.
  • 6Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 7Donoho D, Grimes C. Hessian eigenmaps.. Locally linear embedding techniques for high-dimensional data [J]. Proceedings of the National Academy of Sciences, 2005, 102 (21) : 7426-7431.
  • 8Zhang Zhenyue, Zha Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338.
  • 9Law M, Jain A. Incremental nonlinear dimensionality reduction by manifold learning [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(3):377-391.
  • 10Zhao D, Yang L. Incremental construction of neighborhood graphs for nonlinear dimensionality reduction [C] //Proc of the 18th Int Conf on Pattern Recognition, Vol 3. Los Alamitos, CA: IEEE Computer Society, 2006:177-180.

共引文献73

同被引文献36

  • 1RAMOS S, VERMUNT J, DIAS J. When markets fall down: Are emerging markets all the same [ J]. International Journal of Finance and Economics, 2011, 16(4) : 324 - 338.
  • 2KAKIZAWA Y, SHUMWAY R, TANIQUCH! M. Discrimination and clustering for multivariate time series[ J]. Journal of American Statistical Association, 1998, 93(441) : 328 - 340.
  • 3LIAO T W. Clustering of time series data - a survey[ J]. Pattern Recogintion, 2005, 38( 11 ) : 1857 - 1874.
  • 4REES J, KOEHLER G. Learning genetic algorithm parameters u- sing hidden Markov models[ J]. European Journal of Operational Research, 2006, 175(8) : 806 -820.
  • 5KULLBACK S, LEIBLER R A. On information and sufficiency [ J]. Annuals of Mathematical Statistics, 1951, 22(1) : 79 - 86.
  • 6de ANGELIS L, DIAS J G. Mining categorical sequences from data using a hybrid clustering method[ J]. European Journal of Opera- tional Research, 2014, 234(1) : 720 -730.
  • 7DEMPSTER A P, LAIARD N M, RUBIN D B. Maximum likeli- hood from incomplete data via the EM algorithm[ J]. Journal of the Royal Statistical Society Series B-Methodological, 1977, 39(1) : 1 -38.
  • 8PAN S J, YANG Q. A survey on transfer learning [ J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10) : 1345 - 1359.
  • 9YANG P, TAN Q, DING Y. Bayesian task-level transfer learning for non-linear regression [ C]//Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Piscaraway, NJ: IEEE, 2008:62-65.
  • 10XIE S, FAN W, PENG J, et al. Latent space domain transfer between high dimensional overlapping distributions [ C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009:91 - 100.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部