期刊文献+

基于随机取样的选择性K-means聚类融合算法 被引量:4

Selective K-means clustering ensemble based on random sampling
下载PDF
导出
摘要 由于缺少数据分布、参数和数据类别标记的先验信息,部分基聚类的正确性无法保证,进而影响聚类融合的性能;而且不同基聚类决策对于聚类融合的贡献程度不同,同等对待基聚类决策,将影响聚类融合结果的提升。为解决此问题,提出了基于随机取样的选择性K-means聚类融合算法(RS-KMCE)。该算法中的随机取样策略可以避免基聚类决策选取陷入局部极小,而且依据多样性和正确性定义的综合评价值,有利于算法快速收敛到较优的基聚类子集,提升融合性能。通过2个仿真数据库和4个UCI数据库的实验结果显示:RS-KMCE的聚类性能优于K-means算法、K-means融合算法(KMCE)以及基于Bagging的选择性K-means聚类融合(BA-KMCE)。 Without any prior information about data distribution, parameter and the labels of data, not all base clustering results can truly benefit for the combination decision of clustering ensemble. In addition, if each base clustering plays the same role, the performance of clustering ensemble may be weakened. This paper proposed a selective K-means clustering ensemble based on random sampling, called RS-KMCE. In RS-MKCE, random sampling can avoid local minimum in the process of selecting base clustering subset for ensemble. And the defined evaluation index according to diversity and accuracy can lead to a better base clustering subset for improving the performance of clustering ensemble. The experiment results on two synthetic datasets and four UCI datasets show that performance of the proposed RS-KMCE is better than K-means, K-means clustering ensemble, and selective K-means clustering ensemble based on bagging.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1969-1972,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61070033 61100148 61202269) 广东省自然科学基金资助项目(S20110400 04804) 广东省科技计划项目(2010B050400011) 软件新技术国家重点实验室开放课题(KFKT2011B19) 广东高校优秀青年创新人才培育项目(LYM11060) 广州市科技计划项目(12C42111607 201200000031) 番禺区科技计划项目(2012-Z-03-67)
关键词 聚类融合 选择性聚类融合 随机取样 聚类决策评价 K-MEANS clustering ensemble selective clustering ensemble random sampling evaluation index of clustering K-means
  • 相关文献

参考文献15

  • 1STREHL A, GHOSH J. Cluster ensembles - a knowledge reuse framework for combining multiple partitions [ J]. Journal of Machine Learning Research, 2002, 3:583-617.
  • 2FERN X Z, BRODLEY E C. Cluster ensembles for high dimension- al data elustering: an empirical study, #CS06-30-02[ R]. Corval- lis, USA: Oregon State University, 2004.
  • 3WANG T. CA-Tree: a hierarchical structure for efficient and scala- ble coassociation-based cluster ensembles [ J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B, 2011, 41(3): 686 - 698.
  • 4IAM-ON N, BOONGOEN T, GARRETF S, eta/. A link-based ap- proach to the cluster ensemble problem [ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33(12): 2396-2409.
  • 5FRED A L N, JAIN A K. Combining multiple clusterings using evi- dence accumulation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 6GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation [C]// ICDE '05: Proceeding of 2005 IEEE International Confer- ence on Data Engineering. Piscataway: IEEE, 2005:341-352.
  • 7KUNCHEVA L I, VETROV D P. Evaluation of stability of k-means cluster ensembles with respect to random initialization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1798-1808.
  • 8FISCHER B, BUHMANN J M. Bagging for path-based clustering [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(11) : 1411 - 1415.
  • 9MINAEI-BIDGOLI B, TOPCHY A, PUNCH W. A comparison of resampling methods for clustering ensembles [ C]// Proceeding of 2004 International Conference on Machine Learning: Models, Tech- nologies, and Applications. l_as Vegas: CSREA Press, 2004:939 - 945.
  • 10FERN X Z, BRODLEY E C. Random projection for high dimen- sional data clustering: a cluster ensemble approach [ C]// ICML 2003: Proceedings of the 20th Internatianal Conference on Machine learning. Washington, DC: AAAI Press, 2003: 186-193.

同被引文献30

  • 1张振亚,王进,程红梅,王煦法.基于余弦相似度的文本空间索引方法研究[J].计算机科学,2005,32(9):160-163. 被引量:54
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 3A.Strehl,J.Ghosh.Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J].Journal of Machine Learning Research,2002,3(1):583-617.
  • 4A.Fred,Anil K Jain.Combining multiple clusterings using evidence accumulation[J].Pattern Analysis and Machine Intelligence,2005,27(6):835-850.
  • 5Alexander Topchy,Anil K Jain,William Punch.Clustering ensembles:models of consensus and weak partitions[J].Pattern Analysis and Machine Intelligence,2005,27(12):1866-1881.
  • 6S.T.Hadjitodorov,L.Kuncheva,LP Todorova.Moderate diversity for better cluster ensembles[J].Information Fusion,2006,7(3):264-275.
  • 7L.Kuncheva,D.Vetrov.Evaluation of stability of k-means cluster ensembles with respect to random initialization[J].Pattern Analysis and Machine Intelligence,2006,28(11):1798-1808.
  • 8Nam Nguyen,Rich Caruana.Consensus clusterings[C]//Proceeding of IEEE 13th International Conference on Data Mining,2007:607-612.
  • 9N.Iam-On,T.Boongoen,S.Garrett,et al.A link-based approach to the cluster ensemble problem[J].Pattern Analysis and Machine Intelligence,2011,33(12):2396-2409.
  • 10Hongjun Wang,Hanhuai Shan,Arindam Banerjee.Bayesian cluster ensembles[J].Statistical Analysis and Data Mining:The ASA Data Science Journal,2011,4(1):5470-5471.

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部