期刊文献+

基于边缘方向直方图相关性匹配的图像检索 被引量:11

Image retrieval based on edge direction histogram correlation matching
下载PDF
导出
摘要 针对基于边缘方向自相关图的图像检索算法的优缺点,提出了一种基于边缘方向直方图相关性匹配的图像检索算法。使用自适应中值滤波器滤除图像中的椒盐噪声。利用Sobel算子提取图像边缘,通过计算边缘梯度幅值、角度统计后得边缘方向直方图,并对直方图进行等级化排列构成特征向量。最后使用斯皮尔曼等级相关计算图像特征向量间的相关系数作为衡量图像间相似性的指标。实验结果表明:该算法的平均查准率、查全率较基于边缘方向自相关图算法分别提升10.5%,9.7%,平均检索耗时减少了7.5%。实验验证了算法的有效性,可将算法应用到中大规模图像检索系统中以提升检索效果,提高系统速度。 With regard to the advantages and disadvantages of image retrieval algorithm based on edge orientation autocorrelogram, a kind of image retrieval algorithm based on edge direction histogram correlation matching was proposed. Firstly, the salt and pepper noise in image was filtered by using an adaptive median filter, and then Sobel operator was used to extract image edge. After the edge orientation histogram was got through calculating the edge gradient amplitude and angle, the feature vector was constituted. Lastly, Spearman rank correlation coefficient was used to calculate the correlation coefficient between the feature vectors of images, as a measure of image similarity. Compared with the algorithm based on edge orientation autocorrelogram, the average precision and the recall rate of the new image retrieval algorithm increased by 10.5% and 9.7%. And the retrieval time consumption was also reduced by 7.5%. The experimental results verify the effectiveness of the proposed algorithm. The algorithm could be applied in medium to large image retrieval system to improve retrieval effect and raise the system speed.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1980-1983,共4页 journal of Computer Applications
基金 山西省自然科学基金资助项目(2010011019-2)
关键词 图像检索 自适应中值滤波器 SOBEL算子 边缘方向直方图 斯皮尔曼等级相关 image retrieval adaptive median filter Sobel operator edge direction histogram Spearman rank correlation
  • 相关文献

参考文献11

  • 1RITENDRA D, DHIRAJ J, JIA L, et al. Image retrieval: ideas, in- fluences, and trends of new age[ J]. ACM Computing Surveys, 2008,40(2) : 1 -60.
  • 2SINGH S M, HEMACHANDRAN K. Content based image retrieval using color moment and Gabor based image retrieval using color mo- ment and Gabor texture feature [ J]. International Journal of Comput- er Science Issues, 2012, 9(5) : 299 - 309.
  • 3MAHMOUDI F, SHANBEHZADEHB J, SOLTANIAN-ZADEHC H, et al. Image retrieval based on shape similarity by edge orientationautocorrelogram [ J]. Pattern Recognition, 2003, 36 (8) : 1725 - 1736.
  • 4ZAR J H. Significance testing of the Spearman rank correlation coef- ficient[ J]. Journal of the American Statistical Association, 1972, 67 (339) : 578 - 580.
  • 5KHARE S, BHANDARI A, SINGH S, et al. ECG arthythmia clas- sification using Spearman rank correlation and support vector ma- chine [ C ]// Proceedings of the International Conference on Soft Computing for Problem Solving. Berlin: Springer, 2012:591 -595.
  • 6GONZALEZ R C, WOODS R E. Digital image processing[ M]. Bei- jing: Publishing House of Electronics Industry, 2010:125 - 138.
  • 7GONZALEZ R C, WOODS R E. Digital image processing using MA-TLAB[ M]. Beijing: Publishing House of Electronics Industry, 2009:40 - 65.
  • 8宁春玉,赵春华.自适应中值滤波算法滤除医学图像脉冲噪声[J].计算机工程与应用,2012,48(24):153-156. 被引量:16
  • 9PATEL J, PATWARDHAN J, SANKHE K, et al. Fuzzy inference based edge detection system using Sobel and Laplacian of Gaussian operators[ C]// Proceedings of the ICWET 2011 International Con- ference and Workshop on Emerging Trends in Technology. Murnbai: ACM, 2011 : 694 - 697.
  • 10PATYANAIK S, BHALKE D G. Efficient content based image re- trieval system using MPEG-7 features[ J]. International Journal of Computer Applications, 2012, 53(5) : 19 - 24.

二级参考文献12

  • 1Hong L, Kaufman A.3D virtual colonoscopy[C]//IEEE Symposium on Biomedical Visualization, 1995:26-32.
  • 2Lorensen W E.The exploration of cross-sectional data with a virtual endoscope[M]//Interactive Technology and the New Health Paradigm.[S.1.] :lOS Press, 1995:221-230.
  • 3Brownrigg D R K.The weighted median filter[J].Commu- nication ACM, 1984,27(8) :807-818.
  • 4Ko S J, Lee Y H.Center weighted median filters and their applications to image enhancement[J].IEEE Trans- actions on Circuits and Systems,1991,38(9):984-993.
  • 5Hwang H, Haddad R A.Adaptive median filters:new al- gorithms and results[J].IEEE Transaction on Image Pro- cessing, 1995,4(4) :499-502.
  • 6Sawant A R, Zeman H D.Adaptive median filter algo- rithm to remove impulse noise in x-ray and CT imag- es and speckle in ultrasound images[C]//Proceedings of SPIE,Bellingham, 1999 : 1263-1274.
  • 7Quweider M K, Scargle J D.Adaptive impulse noise re- moval using a cost function based on optimal partition- ing[C]//Proceedings of CISP,Hainan,2008:270-274.
  • 8Dong Yiqiu,Xu Shufang.A new directional weighted me- dian filter for removal of random-valued impulse noise[J]. IEEE Signal Processing Lett,2007,14(3) : 193-196.
  • 9Chen T, Ma K K, Chen L H.Tri-state median filter for image denoising[J].IEEE Transactions on Image Process- ing, 1999,8(12) : 1834-1838.
  • 10Wang Z, Zhang D.Progressive switching median filter for the removal for impulse noise from highly corrupt- ed images[J].IEEE Transactions on Circuits and Sys- tems, 1999,46( 1 ) :78-80.

共引文献15

同被引文献73

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部