期刊文献+

融合Monogenic幅值和相位的人脸识别方法 被引量:1

Face recognition method fusing Monogenic magnitude and phase
下载PDF
导出
摘要 针对仅利用图像滤波幅值信息进行识别而忽视相位信息的问题,提出一种融合Monogenic局部相位和幅值的识别方法。该方法先对相位进行量化和异或,并结合方向和尺度信息得到相位编码(MLXP);其次,分别对相位编码和基于幅值的二值编码进行分块,计算直方图特征;然后,采用基于分块的线性判别进行降维,提高特征的判别能力;最后在评分层实行融合。在ORL和CAS-PEAL人脸数据库上,相位方法 MLXP的平均识别率分别为0.97和0.94,融合Monogenic相位和幅值的方法平均识别率分别为0.99和0.979,超越实验中其他所有方法。实验结果表明,相位利用方法 MLXP是有效的,融合Monogenic相位和幅值的方法不但能够避免传统线性判别中的小样本(3S)问题,而且能以较低的时间和空间复杂度,有效地提高身份的正确识别率。 In order to use the magnitude and phase information of filtered image for face recognition, a new method fusing Monogenic local phase and local magnitude was proposed. Firstly, the authors encoded the phase using the exclusive or (XOR) operator, and combined the orientation and scale information. Then the authors divided the phase pattern maps and binary pattern maps based on magnitude into blocks. After that, they extracted the histograms from blocks. Secondly, they used the block-based Fisher principle to reduce the feature dimension and improve the discrimination ability. At last, the authors fused the cosine similarity of magnitude and phase at score level. The phase method Monogenic Local XOR Pattern (MLXP) reached the recognition rate of 0.97 and 0.94, and the fusing method recognition rate was 0.99 and 0.979 on the ORL and CAS-PEAL face databases respectively and the fusing method outperformed all the other methods used in the experiment. The results verify that the MLXP method is effective. And the method fusing the Monogenic magnitude and phase not only avoids the Small Sample Size (3S) problem in conventional Fisher discrimination methods, but also improves the recognition performance significantly with smaller time and space complexity.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1991-1994,共4页 journal of Computer Applications
关键词 Monogenic滤波器 相位 幅值 特征融合 人脸识别 Monogenic filter phase magnitude feature fusion face recognition
  • 相关文献

参考文献15

  • 1TURK M, PENTLAND A. Eigenfaces for recognition[ J]. Cognitive Neurosciens, 1991, 13(1) : 71 - 86.
  • 2BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711 -720.
  • 3MENG J E, CHEN W L, WU S Q. High-speed face recognition based on discrete cosine transform and RBF neural network[ J]. IEEE Transactions on Neural Networks, 2005, 16(3): 679 -691.
  • 4LIU C J, WECHSLER H. Gabor feature based classification using the enhanced Fisher linear discriminate model for face recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2002, 11(4) : 467 -476.
  • 5蔡体健,樊晓平,刘遵雄.基于稀疏表示的高噪声人脸识别及算法优化[J].计算机应用,2012,32(8):2313-2315. 被引量:11
  • 6TIMO O, PIETIKAINEN M. Multi-resolution gray-scale and rota- tion invariant texture classification with local binary patterns [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7) :971 -987.
  • 7ZHANG W C, SHAN S G, GAO W, et al. Local Gabor Binary Pat- tern Histogram Sequence (LGBPHS) : a novel non- statistical model for face representation and recognition[ C]/! Proceedings of the tenth IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005:786-791.
  • 8ZHANG B C, SHAN S G, CHEN X L, et al. Histogram of Gabor Phase Patterns (HGPP) : a novel object representation approach for face recognition[ J]. IEEE Transactions on Image Processing, 2007, 16(1) :57 -68.
  • 9ZHANG L, ZHANG L, GUO Z H, et al. Monogenic-LBP: a new approach for rotation invariant texture classification[ C]/! Proceed- ings of the 2010 7th International Conference on Image Processing. Piscataway: IEEE, 2010:2677-2680.
  • 10YANG M, ZHANG L, ZHANG L, et al. Monogenic Binary Pattem (MBP): a novel feature extraction and representation model for face recognition[ C]// Proceedings of the 20th IEEE International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 2680 - 2683.

二级参考文献18

  • 1YANG A Y, ZHOU Z, MA Y, et al. Towards a robust face recognition system using compressive sensing[C]// Proceedings of Interspeech: 11th Annual Conference of the International Speech Communication Association. Makuhari, Chiba:[s.n.], 2010: 2250-2253.
  • 2WRIGHT J, GANESH A, YANG A Y, et al. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12): 4655-4665.
  • 4SHA W.Orthogonal matching pursuit algorithm for compressive sensing [CP/OL].[2011-09-01]. http://www.eee.hku.hk/~wsha/Freecode/freecode.htm.
  • 5KARABULUT G Z,MOURA L,PANARIO D,et al. Flexible tree- search based orthogonal matching pursuit algorithm[C] // ICASSP '05: IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2005:673-676.
  • 6NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.
  • 7DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]// 42nd Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE, 2008:581-587.
  • 8MO QUN, SHEN YI. Remark on the restricted isometry property in orthogonal matching pursuit[EB/OL]. [2012-01-18]. http://www.paper.edu.cn/index.php/default/en_releasepaper/content/4408549.
  • 9MALEH R. Improved RIP analysis of orthogonal matching pursuit[EB/OL].[2012-01-18]. http://arxiv.org/abs/1102.4311.
  • 10CANDES E J, TAO T. Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005,51(12): 4203-4215.

共引文献10

同被引文献14

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2Dalai N, Triggs B.Histograms of oriented human detection[C]//2005 IEEE Computer ference on Computer Vision and Pattern gradients for Society Con- Recognition,San Diego, CA, USA, 2005 : 886-893.
  • 3Vu N S, Caplier A.Face recognition with patterns of ori- ented edge magnitudes[C]//llth European Conference on Computer Vision, Heraklion, Crete, Greece, 2010 : 313-326.
  • 4Ahonen T, Hadid A, Pietikainen M.Face description with local binary patterns: application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2006,28 ( 12 ) : 2037-2041.
  • 5Zhang W,Shan S,Gao W,et al.Local Gabor Binary Pat- tern Histogram Sequence (LGBPHS) :a novel non-statistical model for face representation and recognition[C]//Pro- ceedings of 5th International Conference on Computer Vision, Beijing, China, 2005 : 786-791.
  • 6Zhang B, Shan S, Chen X, et al.Histogram of Gabor Phase Patterns (HGPP):a novel object representation approach for face recognition[J].IEEE Transactions on Image Pro- cessing, 2007,16( 1 ) :57-68.
  • 7Liao S, Zhu X, Lei Z, et al.Learning multi-scale block local binary patterns for face recognition[C]//International Conference, ICB 2007, Seoul, Korea, 2007: 828-837.
  • 8Zhen Lei, Pietikainen M, Li S Z.Learning discriminant face descriptor[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36 ( 2 ) : 289-302.
  • 9Vu N S.Exploring patterns of gradient orientations and magnitudes for face recognition[J].IEEE Transactions on Information Forensics and Security,2013,8(2):295-304.
  • 10Vu N S, Dee H M, Caplier A.Face recognition using the POEM descriptor[J].Pattern Recognition, 2012, 45 (7) : 2478-2488.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部