期刊文献+

图的Smarandachely邻点无圈边色数的一个上界 被引量:3

AN UPPER BOUND OF THE SMARANDACHELY-ADJACENT-VERTEX ACYCLIC EDGE COLORING OF GRAPHS
原文传递
导出
摘要 提出了图的Smarandachely邻点无圈边染色的概念,讨论了图的Smarandachely邻点无圈边染色与邻点可区别无圈边染色之间的关系,并运用概率方法得到了图G的Smarandachely邻点无圈边色数的一个上界,其中G为无孤立边的图. In the paper,the concept of the Smarandachely-adjacent-vertex acyclic edge coloring of graphs is proposed,and the relationship between Smarandachelyadjacent -vertex acyclic edge coloring and adjacent vertex distinguishing acyclic edge coloring is discussed.An upper bound of the Smarandachely-adjacent-vertex acyclic edge coloring of graphs with no isolated edges is obtained by the way of probablity.
出处 《系统科学与数学》 CSCD 北大核心 2013年第5期550-554,共5页 Journal of Systems Science and Mathematical Sciences
基金 甘肃省教育厅基金项目(0501-03) 甘肃省教育厅横向基金(050301)资助课题
关键词 无圈边染色 邻强边染色 图的Smarandachely邻点边染色 图的Smarandachely邻点无圈边染色 Lovász局部引理 Acyclic edge coloring adjacent strong edge coloring Smarandachely-adjacent-vertex edge coloring Smarandachely-adjacent-vertex acyclic edge coloring Lovasz local lemma
  • 相关文献

参考文献3

二级参考文献11

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2Alon N, McDiarmid C J H and Reed B A. Acyclic coloring of graphs. Random Structures and Algorithms, 1991, 2: 277-288.
  • 3Alon N, Sudakov B, Zaks A. Acyclic edge colorings of graphs. 2002 John Wiley & Sons, Inc. J. Graph Theory, 2001, 37(3): 157-167.
  • 4Hatami H. △+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. of Combinatorial Theory (Series B), 2005, 95: 246-256.
  • 5Zhang Z F, Liu L Z, Wang J F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters, 2002, 15: 623-626.
  • 6Molloy M, Reed B. Graph Coloring and the Probabilistic Method. Berlin, Spring, 2002.
  • 7Alon N, Spencer J H. The Probabilistic Method. New York, Wiley, 1992.
  • 8Michael Krivelevich, Asaf Nachmias. Coloring complete bipartite graphs from random lists. Random Structures and Algorithms, 2006, 29: 436-449.
  • 9Alon N, Sudakov B, Zaks A. Acyclic edge colorings of graphs. 2002 John Wiley & Sons, Inc. J. Graph Theory, 2001, 37(3): 157-167.
  • 10Alon N, Zaks A. Algorithmic aspects of acyclic edge colorings. Algorithmica, 2002, 32: 611-614.

共引文献190

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部