期刊文献+

线性循环程序的终止性判定 被引量:1

TERMINATION ANALYSIS OF LINEAR LOOP PROGRAMS
原文传递
导出
摘要 对赋值矩阵仅为一个Jordan块的特殊线性循环,构造了不可终止点集的一个子集,证明了此类循环的终止性可仅由该子集是否为空来判定.除此之外,该类循环的终止性被证明也可通过比较几个系数的符号来判定.而对一般的线性循环程序,提出了递归判定算法,使得这类循环的终止性可转化为上述特殊循环的终止性判定.最后,对N-不可终止点,给出了计算N的方法. Termination of linear programs proposed by Tiwari is analyzed in this paper.Especially for a special class of linear loops,two different methods are presented to determine its termination.Moreover,it is shown that the determination of termination of general linear programs can be converted to the determination of termination of this special class of loops.Finally,for an N-nonterminating point X, a method is given to compute N's value such that this point eventually becomes a nonterminating point after N loop iterations.
作者 李轶
出处 《系统科学与数学》 CSCD 北大核心 2013年第5期626-638,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61103110) 国家自然科学基金重点项目(91018012) 国家973计划项目(2011CB302400) 重庆市科技攻关项目(cstc2012ggB40004)资助课题
关键词 可信计算 线性循环 终止性分析 N-不可终止点 Trustworthy computing linear loops termination analysis N-nonterminating point
  • 相关文献

参考文献15

  • 1Yang L, Zhou C, Zhan N, Xia B. Recent advances in program verification through computer algebra. Front. Co:nput. Sci., 2010, 4(1): 1-16.
  • 2刘克,单志广,王戟,何积丰,张兆田,秦玉文.“可信软件基础研究”重大研究计划综述[J].中国科学基金,2008,22(3):145-151. 被引量:136
  • 3Bradley A, Manna Z, Sipma H. Linear ranking with reachability. CAV2005. Lecture Notes in Computer Science, 2005, 3576: 491-504, Springer-Verlag, Heidelberg.
  • 4Chen Y, Xia B, Yang L, Zhou C. Discovering non-linear ranking functions by solving semi- algebraic systems. Lecture Notes in Computer Science, 2007, 4711: 34-49, Springer, Heidelberg.
  • 5Col6n M A, Sipma H B. Synthesis of Linear Ranking Functions. Lecture Notes in Computer Science, 2001, 2031: 81-81, Springer, Heidelberg.
  • 6Col6n M, Sipma H B. Practical Methods for proving program termination. Lecture Notes in Computer Science, 2002, 2404: 227-240, Springer, Heidelberg.
  • 7Cousot P. Proving program in variance and termination by parametric abstraction, Langrangian Relacation and semidefinite programming. (ed. by Cousot R), VMCAI 2005.Lecture Notes in Computer Science, 2005, 3385: 1-24, Springer, Heidelberg.
  • 8Podelski A, Rybalchenko A. A Complete Method for the Synthesis of Linear Ranking Functions. (eds. by Steffen B and G. Levi G), VMCAI 2004, Lecture Notes in Computer Science, 2004, 2937: 239-251, Springer, Heidelberg.
  • 9Babic D, Hu A 3, Rakamaric Z, Cook B. Proving Termination by Divergence. Fifth IEEE Inter- national Conference on Software Engineering and Formal Methods. 2007, 93 102.
  • 10Braverman M. Termination of integer linear programs. (eds. by Ball T, Jones R B), CAV2006. Lecture Notes in Computer Science, 2006, 4144: 372-385, Springer, Heidelberg.

二级参考文献11

  • 1[1]Mishra B. Algorithmic Algebra. New York: Springer-verlag, 1993
  • 2[2]Yang L, Zhang J Z, Hou X R. Nonlinear Algebraic Equation Systems and Automated Theorem Proving.Shanghai: Shanghai Science, Technology and Education Publishing House, 1996 (in Chinese)
  • 3[3]Yang L, Hou X R, Zeng Z B. A Complete Discrimination System for Polynomials. Science in China(Series E), 39(6): 628-646
  • 4[4]Yang L, Hou X R, Xia B C. A Complete Algorithm for a Class of Inequality Type Theorems. Science in China (Seires F), 2001, 44:33-49
  • 5[5]Yang L, Xia B C. Explicit Criterion to Determine the Number of Positive Roots of a Polynomial.MM Research Preprints, 15, 134-145. Beijing: Mathematics Mechanization Research Center, 1997
  • 6[6]Yang L. Recent Advances on Determining the Number of Real Roots of Parametric Polynomials. J.Symb. Conput., 1999, 28:225-242
  • 7[7]Wyman J. The Binding Potential, A Neglected Linkage Concept. J. Mol. Biol., 1965, 11:631-644
  • 8[8]Briggs W E. Zeros and Factors of Polynomials with Positive Coefficients and Protein-ligand Binding.Rocky Mount. J. Math., 1985, 15(1): 75-89
  • 9[9]Bardsley W G. Factorability of the Allosteric Binding Polynomial and Graphical Manifestations of Cooperativity in Third Degree Saturation Functions. J. Theor. Biol., 1977, 67:407-431
  • 10[10]Bardsley W G. Woolfson R, Mazat J -P. Relationships Between the Magnitude of Hill Plot Slopes,Apparent Binding Constants and Factorability of Binding Polynomials and their Hessians. J. Theor.Biol., 1980, 85:247-284

共引文献139

同被引文献6

  • 1Domagoj Babi?,Byron Cook,Alan J. Hu,Zvonimir Rakamari?.Proving termination of nonlinear command sequences[J].Formal Aspects of Computing.2013(3)
  • 2Bican Xia,Zhihai Zhang.Termination of linear programs with nonlinear constraints[J].Journal of Symbolic Computation.2010(11)
  • 3Amir M. Ben-Amram.A complexity tradeoff in ranking-function termination proofs[J].Acta Informatica.2009(1)
  • 4Byron Cook,Andreas Podelski,Andrey Rybalchenko.Termination proofs for systems code[J].ACM SIGPLAN Notices.2006(6)
  • 5Christopher W. Brown.QEPCAD B[J].ACM SIGSAM Bulletin.2003(4)
  • 6陈敬敏.非线性循环及R^m上线性循环的终止性判定[J].四川大学学报(工程科学版),2013,45(2):110-116. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部