摘要
对赋值矩阵仅为一个Jordan块的特殊线性循环,构造了不可终止点集的一个子集,证明了此类循环的终止性可仅由该子集是否为空来判定.除此之外,该类循环的终止性被证明也可通过比较几个系数的符号来判定.而对一般的线性循环程序,提出了递归判定算法,使得这类循环的终止性可转化为上述特殊循环的终止性判定.最后,对N-不可终止点,给出了计算N的方法.
Termination of linear programs proposed by Tiwari is analyzed in this paper.Especially for a special class of linear loops,two different methods are presented to determine its termination.Moreover,it is shown that the determination of termination of general linear programs can be converted to the determination of termination of this special class of loops.Finally,for an N-nonterminating point X, a method is given to compute N's value such that this point eventually becomes a nonterminating point after N loop iterations.
出处
《系统科学与数学》
CSCD
北大核心
2013年第5期626-638,共13页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(61103110)
国家自然科学基金重点项目(91018012)
国家973计划项目(2011CB302400)
重庆市科技攻关项目(cstc2012ggB40004)资助课题
关键词
可信计算
线性循环
终止性分析
N-不可终止点
Trustworthy computing
linear loops
termination analysis
N-nonterminating point