期刊文献+

基于流行病理论的无线认知传感网抗攻击模型 被引量:2

An Epidemic Theoretic Model Against Data Falsification Attacks for Wireless Cognitive Sensor Networks
下载PDF
导出
摘要 大量无线通信设备在ISM频段工作致使免许可频段频谱资源稀缺,促使认知无线电和无线传感器网络(WSN)融合,形成无线认知传感器网络(WCSN)。文章研究了无线认知传感器网络中的数据伪造攻击,即恶意次用户通过向其他次用户发送伪造的频谱感知数据,导致控制中心做出错误的频谱分配决策。基于流行病理论,文章对数据伪造攻击中的信息传播过程进行了建模和分析,找出了决定无线认知传感器网络中潜在流行病爆发的关键因素。最后,通过仿真实验,对模型进行了验证,并对系统动态特性进行了研究。 A large amount of wireless communication equipments operating in ISM band result in spectrum scarcity in the unlicensed band, leading to the confluence of cognitive radio into Wireless sensor networks (WSN), which we refer to as Wireless Cognitive Sensor Network (WCSN). In this paper, we study the data falsification attacks to WCSN, where intruders send false local spectrum sensing data resulting in incorrect spectrum allocation by control centers. Based on epidemic theory, we model and analyze the information spreading process in data falsification attacks and identify key factors determining potential epidemic outbreaks in WCSN. The analytical results will provide deep insights in designing potential defense schemes against Byzantine attacks. In conclusion, through simulation experiments, we validate our models and perform investigations on the system dynamics.
出处 《信息网络安全》 2013年第6期26-29,共4页 Netinfo Security
基金 国家自然科学基金"节能无线认知传感器网络协同频谱感知安全研究"[61100240]
关键词 无线认知传感器网络(WCSN) 频谱感知数据伪造攻击 流行病理论 SIS模型 SIR模型 wireless cognitive sensor network (WCSN) spectrum sensing data falsification (SSDF) attacks epidemic theory SIS model SIR model
  • 相关文献

参考文献10

  • 1O. Akan, O. Karli, O. Ergul. Cognitive radio sensor networks [J]. IEEE Network, 2009, 24(03): 734-740,.
  • 2Xin-Lin Huang, Gang Wang, Fei Hu. Multitask Spectrum Sensing in Cogamive Radio Networks via Spatiotemporal Data Mining [J]. IEEE Transactions on Vehicular Technology, 2013, 62(02): 809-823.
  • 3Wha Sook Jeon, l)ong Heon Lee, 1)ong Geun Jeong. Collaborative Sensing Management for Cognitive l.adio Networks with keporting Overhead [J]. IEEE Transactions on Wireless Communications, 2013, I2(12): 595-605.
  • 4Chao Yang, Yuli Fu, Yah Zhang, et al. Energy-Efficient Hybrid Spectrum Access Scheme in Cognitive Vehicular Ad hoc Networks [J].IEEE Communications Letters, 2013, 17(112): 329-332.
  • 5G. Shah, V. Gungor, O. A. Akan. Cross-Layer QoS-Aware Comnlunication Framework in Cognitive P.adio Sensor Networks for Smart Grid Applications[J]. IEEE Transactions on Industrial Informatics, 2013, 71({}3): 936-944.
  • 6F. Farmaoi, M. A. Jannat-Abad, R. Berangi. Detection of SS1)F attack using SVDD algorithm in cognitive radio networks IC]. Proc. of 2(111 Third International Conference on Computational Intelligece, Communication Systems and Networks, Bali, indonesia, Jul, 2(11 26- 28.
  • 7P. Kaligineedi, M. Khabbazian,V. K. Bhargava. Malicious user detection in a cognitive radio cooperative sensing system [J]. IEEE Transactions on Wireless Comnmnications, 2012, 11 (08): 2488-2497.
  • 8M. E. J. Newman. Network: an introduction [M]. New York: Oxford University Press, 2010.
  • 9P. De, L. Yonghe, S. K. Das. An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks [J].IEEE Transactions on Mobile Conaputing, 2H3, 12(()3): 413-425.
  • 10Li Husheng, Chen Chien-fei, Lai Lifeng. Propagation of spectrum preference in cognitive radio networks: a social network approach [C]. Proc. of 2011 IEEE International Conference on Cmnmunications (ICC), Kyoto, Japan, Jtm, 2012 5-9.

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部