期刊文献+

基于神经网络的Q学习在Khepera Ⅱ机器人避障中的应用

Neural Network-based Q-learning Applied to Obstacle Avoidance in Khepera Ⅱ Mobile Robots
原文传递
导出
摘要 为了提高移动机器人的自主学习能力,在传统的机器人行为控制结构基础上设计了智能控制结构,同时引入了基于神经网络的Q学习模块算法,克服了传统算法只能应用到离散状态中的不足。移动机器人的避障实验结果表明,该方法能够使移动机器人通过自学习实现自主避障。 An intelligent control architecture was designed based on a behavior architecture to improve the learning ability of mobile robots. At the same time, a Q-learning algorithm based on a neural network was led into the intelligent control architecture,while normal algorithm can only be applied to discrete states. Experiments of obstacle avoidance show that the mobile robot can learn to avoid obstacles with the algo- rithm.
出处 《世界科技研究与发展》 CSCD 2013年第3期374-376,407,共4页 World Sci-Tech R&D
基金 国家自然科学基金(61075096)资助
关键词 移动机器人 神经网络 Q学习 避障 mobile robot neural network Q-learning obstacle avoidance
  • 相关文献

参考文献16

  • 1BROOKS R . A robust layered control system for mobile robot [ J ]. IEEE Journal of Robotics and Automation, 1986, RA-2 ( 1 ) : 14-23.
  • 2ANDRY P,GAUSSIER P,NADEL B J. Learning invariant sensorimo- tot behaviors: A developmental approach to imitation mechanisms[ J ]. Adaptive Behavior,2004,12(2) :117-119.
  • 3LEE MH, MENG Q, CHAO F. Staged competence learning in develop- mental robotics[ J]. Adaptive Behaviour,2007,15 ( 3 ) :241-255.
  • 4SUTTON R S,BARTO S. Reinforcement learning[ M ]. Cambridge:M IT Press,1998,42 (3) :36-42.
  • 5张文志,吕恬生.Reactive fuzzy controller design by Q-learning for mobile robot navigation[J].Journal of Harbin Institute of Technology(New Series),2005,12(3):319-324. 被引量:5
  • 6HOTZ P, GOMEZ G, PFEIFER R. Evolving the morphology of a neu- ral network for controlling a foveating retina-and its test on a real robot [ J ]. Artificial Life VIII-Sth International Conference on the Simula- tion and Synthesis of Living Systems ,2003,28 (3) :52-54.
  • 7NAGARAJAN N,STEVENS C. How does the speed of thought com- pare for brains and digital computers[ J]. Current Biology,2008,18 (17) :756-758.
  • 8KRAUZLIS R. The control of voluntary eye movements : New perspec- tives[ J ]. The Neuroscientist ,2005,11 ( 2 ) : 124-128.
  • 9SCHLESIGER M, AMSO D ,jOHNSON S. Simulating infants'gaze pat- terns during the development of perceptual completion [ J ]. Proceed- ings of the 7th International Conference on Epigenetic Robotics ,2007, 12(3) :157-164.
  • 10CHAO F, LEE M H, LEE J J. A developmental algorithm for ocular_ motor coordination[ J]. Robotics and Autonomous Systems,2010,58(3) :239-248.

二级参考文献57

  • 1段勇,徐心和.自主足球机器人视觉系统结构及关键技术[J].东北大学学报(自然科学版),2006,27(1):9-12. 被引量:8
  • 2王红睿,赵黎明.基于增强学习规则的倒立摆模糊神经网络控制器[J].吉林大学学报(信息科学版),2006,24(5):561-566. 被引量:1
  • 3康怀祺,史彩成,何佩琨,李晓琼.Novel Sequential Neural Network Learning Algorithm for Function Approximation[J].Journal of Beijing Institute of Technology,2007,16(2):197-200. 被引量:1
  • 4SUTTON R S, BARTO A G. Reinforcement Learning: An Introductin [ M]. Cambridge, MA: MIT Press, 1998.
  • 5THURN S, MITCHEIL T M. Lifelong Robot Leaning [J]. Robotics and Autonomous System, 1995, 15 (1) : 25-46.
  • 6WATKINS C, DAYAN P. Q-Learning [J]. Machine Learning, 1992, 8 (3/4): 279-292.
  • 7WIDROW B, RUMELHART D E, LEHR M A. The Basic Ideas in Neural Networks [ J]. Communications of the ACM, 1994, 37 (3) : 87-92.
  • 8WANG Xue-song, CHENG Yu-hu, SUN Wei. Q Learning Based on Self-Organizing Fuzzy Radial Basis Function Network [ C] //Thrid International symposium on Neural Networks. Berlin Heidelberg: Springer Verlag, 2006: 607-615.
  • 9PARK J, SANDBERG I W. Universal Approximation Using Radial Basis Functions Networks [ J ]. Neural Computation, 1991, 3 (2): 246-257.
  • 10JUN L. Learning Reactive Behaviors with Constructive Neural Network in Mobile Robotics [ D]. [ S.l. ] : Orebro Studies in Technology, 2006.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部