期刊文献+

大气压空气等离子体羽的振动温度研究

Vibrational Temperature of Plasma Plume in Atmospheric Pressure Air
下载PDF
导出
摘要 利用三电极介质阻挡放电装置,在大气压空气中产生了较大体积的等离子体羽。采用光学方法对该等离子体羽的特性进行了研究。发现随着外加电压峰值增加,每个外加电压周期的放电脉冲个数增加。通过采集等离子体羽的发射光谱,空间分辨地研究了放电等离子体羽的振动温度。结果表明等离子体羽的振动温度随着外加电压峰值的增加而减小;随着远离喷嘴的距离的增加,等离子体振动温度先增加后减小,当距离喷嘴5.4mm时振动温度达到最高值。对上述现象进行了定性分析。研究结果对大气压空气等离子体羽在杀菌消毒等领域的应用具有重要意义。 A tri-electrode discharge device was designed in a dielectric barrier discharge configurations to generate a fairly large volume plasma plume in atmospheric pressure air. The discharge characteristics of the plasma plume were investigated by an op- tical method. The discharge emission from the plasma plume was collected by a photomultiplier tube. It was found that the num- ber of discharge pulse per cycle of the applied voltage increased with increasing the peak value of the applied voltage. The emis- sion spectra of the plasma plume were collected by a spectrometer. The vibrational temperature was calculated by fitting the ex- perimental data to the theoretical one. Results showed that the vibrational temperature of the plasma plume decreases with in- creasing the Up. Spatially resolved measurement of the vibrational temperature was also conducted on the plasma plume with the same method. Results showed that the vibrational temperature increases firstly and then decreases with increasing distance from the nozzle. The vibrational temperature reachs its maximum when the distance is 5.4 mrn from the nozzle. These experimental phenomena were analyzed qualitatively based on the discharge theory. These results have important significance for the industrial applications of the plasma plume in atmospheric pressure air.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第7期1754-1757,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10805013 51077035) 河北省杰出青年基金项目(A2012201045) 教育部科技研究重点项目(210014) 河北省自然科学基金资助项目(A2011201132) 河北省教育厅优秀青年项目(Y2011120)资助
关键词 等离子体羽 发射光谱 空间分辨 振动温度 Plasma plume Optical emission spectrum Spatially resolved measurement Vibrational temperature
  • 相关文献

参考文献1

二级参考文献13

  • 1Kanazawa S, Kogoma M, Moriwaki T, Okazaki S .1988 J. Phys. D 21 838.
  • 2Luo H Y, Liang Z, Lu B, Wang X X, Guan Z C, Wang L M .2007 Appl. Phys. Lett. 91 221504.
  • 3Kieft I E, Laan E P, Stoffels E .2004 New J. Phys. 6 149.
  • 4Vidmar R J .1990 IEEE Trans. Plasma Sci. 18 733.
  • 5Staack D, Farouk B, Gutsol A, Fridman A .2005 Plasma Sour. Sci. Technol. 14 700.
  • 6Machala Z, Laux C O, Kruger C H .2005 IEEE Trans. Plasma Sci. 33 320.
  • 7Staack D, Arouk B F, Gutsol A, Fridman A .2008 Plasma Sour. Sci. Technol. 17 025013.
  • 8Machala Z, Jedlovsky I, Martisovits V .2008 IEEE Trans.Plasma Sci. 36 918.
  • 9Takaki K, Hosokawa M, Sasaki T, Mukaigawa S, Fujiwara T .2005 Appl. Phys. Lett. 86 151501.
  • 10Stoffels E .2006 Plasma Sour. Sci. Technol. 15 S169.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部