摘要
绿色GIr1和红色R-4B磷光染料,采用红绿红、绿红、红绿、绿红绿等顺序,与主体材料CBP共蒸,制备了四种红绿磷光器件,并结合TCTA和BCP对载流子和激子的阻挡作用,研究了发光层掺杂顺序对器件性能的影响。结果表明,四种器件光谱、光效、亮度和发光颜色均有较大差异,且BCP和CBP界面附近是主要的激子复合区。在电压为5v,红绿红掺杂型器件,亮度、电流效率和色坐标分别为40.12cd.m-2,7.68cd.A-1和(0.630 1,0.365 4);而绿红绿掺杂型器件为104cd.m-2,19.75cd.A-1和(0.371 7,0.576 8)。分析认为:CBP与GIr1,R-4B,BCP,TCTA有较大的LUMO能级差异,发光层中电子的主要传输方式为掺杂分子上的俘获和分子间跳跃,不同掺杂顺序会形成不同能级势垒分布,发光层内电荷累积形成的空间电场分布不同。
Utilizing Girl (green) and R-4B(red) phosphorescent dye, organic light-emitting diodes with different doping orders on red and green light-emitting layers were fabricated. The authors investigated the luminescent properties of devices combined with the effect of electron (TCTA) and hole (BCP) blocking layer. The results showed that the great impacts on spectrum, light efficiency, luminance and luminescent color were produced based on different doping order, and the authros also found the strong emission peak at the interface of the BCP and CBP layer. With the use of the red and green doping type, 0. 527 mA ·cm-2 , 104 cd· m2, 19.75 cd · A-1 and (0. 371 7, 0. 576 8) could be reached, respectively. The reasons were that on the one hand, be- cause of large difference between energy levels of host material CBP and doping material Girl, R-4B, and charge trapping and hopping v/a dopants were the main mechanism of change; on the other hand, for the different energy levels between dopants and blocking layers, the doping sequence could affect barrier distribution, and then a^ect the electric field distribution.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2013年第7期1763-1766,共4页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(61076066)
陕西省科技统筹创新工程计划项目(2011KTCQ01-09)资助
关键词
有机电致发光器件
磷光
电子阻挡
空穴阻挡
Organic light-emitting devices
Phosphorescence
Electron barrier
Hole barrier