摘要
针对高分辨率遥感图像中不同地物具有粒度差异的特点,提出了一种多尺度区域粒度分析的图像分割方法。该方法首先使用均值漂移得到图像各尺度上的初始过分割区域,然后通过考虑区域大小和区域间上下文关系进行粒度分析,最后利用马尔科夫随机场模型对图像的粒度信息和光谱信息进行建模,得到分割结果。用平朔地区SPOT5和泰州航拍等遥感图像进行了实验,并与若干考虑光谱特征的分割方法进行了对比,结果表明提出的方法能有效地提高分割精度。
Remote sensing image has abundant granularity information. In order to utilize this information, a muhiresolution re- gion granularity analysis method is proposed in the present paper for image segmentation. The proposed method firstly uses the mean shift to obtain the initial over-segmented regions at each resolution of the image, and then extracts the granularity informa- tion bascd on the region size and the region context, the Markov random field is employed to provide the final segmentation result by modeling the spectrum information and the granularity information. The SPOT5 remote sensing images of Pingshuo and the aerial image of Taizhou were tested to evaluate the proposed method. Compared with other spectrum-based methods, our method shows a better performance and results improved the segmentation accuracy.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2013年第7期1912-1916,共5页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金项目(41001286
41001251
41001256
41101425)
河南省基础与前沿技术研究计划项目(132300410150)资助
关键词
分割
粒度
马尔科夫随机场
Image segmentation
Granularity information
Markov random field