期刊文献+

有理Fourier级数在变差条件下的收敛性研究

On convergence of rational Fourier series of functions of bounded variations
原文传递
导出
摘要 本文把Fourier级数的一些经典结论推广到有理Fourier级数的情况下.首先给出了有理Fourier级数和共轭有理Fourier级数在有界变差条件下的收敛速度估计.利用此结论,得到了类似于Fourier级数的Dirichlet-Jordan定理和W.H.Young定理.最后,证明了这两个定理在调和有界变差条件下也成立. In this paper, we extended some classical results of Fourier series to rational Fourier series. We give an estimate of convergence rate of the rational Fourier series of functions of bounded variation and an analogous one for the conjugate rational Fourier series. As its applications, we deduce the Dirichlet-Jordan's theorem and W. H. Young's theorem for rational Fourier series of functions of bounded variation. Finally, we extend these two theorems to harmonic bounded variation.
作者 谭立辉 钱涛
出处 《中国科学:数学》 CSCD 北大核心 2013年第6期541-550,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11101094) 澳门大学研究基金(批准号:UL017/08-Y3/MAT/QT01/FST) 澳门科学技术基金(批准号:FDCT/056/2010/A3)资助项目
关键词 有理Fourier级数 共轭有理Fourier级数 收敛速度 变差函数 rational Fourier series, conjugate rational Fourier series, convergence rate, variation functions
  • 相关文献

参考文献17

  • 1Sansone G. Orthogonal Functions. NewYork: Interscience Publishers, 1959.
  • 2Davis H F. Fourier Series and Orthogonal Functions. New York: Dover Publications, 1989.
  • 3Wang R, Xu Y S, Zhang H Z. Fast nonlinear fourier expansions. Adv Adapt Data Anal, 2009, 1:373-405.
  • 4Tan L H, Shen L X, Yang L H. Rational orthogonal bases satisfying the Bedrosian identity. Adv Comput Math, 2010, 33:285-303.
  • 5Qian T, Wang Y B. Adaptive Fourier series-a variation of greedy algorithm. Adv Comput Math, 2011, 34:279-293.
  • 6Bultheel A, Gonzdlez-Vera P, Hendriksen E, et al. Orthogonal Rational Functions. Cambridge: Cambridge University Press, 1999.
  • 7Walsh J L. Interpolation and Approximation by Rational Functions in the Complex Plane. Providence, RI: Amer Math Soc, 1969.
  • 8Ninness B, Gustafsson F. A unifying construction of orthonormal bases for system identification. IEEE Trans Automat Control, 1997, 42:515-521.
  • 9Ninness B, Hjalmarsson H, Gustafsson F. Generalized Fourier and toeplitz results for rational orthonormal bases. SIAM J Control Optim, 1999, 37:429-460.
  • 10Akcay H. On the uniform approximation of discrete-time systems by generalized Fourier series. IEEE Trans Signal Process, 2001, 49:1461-1467.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部