摘要
本文把Fourier级数的一些经典结论推广到有理Fourier级数的情况下.首先给出了有理Fourier级数和共轭有理Fourier级数在有界变差条件下的收敛速度估计.利用此结论,得到了类似于Fourier级数的Dirichlet-Jordan定理和W.H.Young定理.最后,证明了这两个定理在调和有界变差条件下也成立.
In this paper, we extended some classical results of Fourier series to rational Fourier series. We give an estimate of convergence rate of the rational Fourier series of functions of bounded variation and an analogous one for the conjugate rational Fourier series. As its applications, we deduce the Dirichlet-Jordan's theorem and W. H. Young's theorem for rational Fourier series of functions of bounded variation. Finally, we extend these two theorems to harmonic bounded variation.
出处
《中国科学:数学》
CSCD
北大核心
2013年第6期541-550,共10页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11101094)
澳门大学研究基金(批准号:UL017/08-Y3/MAT/QT01/FST)
澳门科学技术基金(批准号:FDCT/056/2010/A3)资助项目