摘要
现代宏观经济研究表明,周期波动体现了月度、季度及年度等各种宏观经济指标的协同性变动。考虑到GDP等季度指标在宏观经济分析中的重要地位,本文构建了一种能够综合利用我国季度数据和月度数据的经济周期计量模型,即混频数据区制转移动态因子模型。通过对我国季度GDP同比增长率和五个月度一致指标进行实证建模和估计,本文不仅识别了我国1992年至2011年间的经济周期变化,而且获得了可以描述我国经济运行状况的一致指数。特别地,本文通过收集宏观经济实时数据,进一步从实时分析的角度考察了该模型在我国经济周期测度(经济转折点识别和测定)上的可靠性和时效性,从而验证了该模型在我国的适用性。
Modern macroeconomic studies show that economic fluctuations behave business cycle comovement across the monthly, quarterly and annually economic indicators. Taking into account the key role of quarterly indicators such as GDP in macroeconomic analysis, this paper introduces an econometric model ( called mixed-frequency Markov switching dynamic factor model) that could combine both monthly and quarterly indicators to model the business cycle. Though our empirical analysis on China's year-on-year quarterly GDP growth rate and five monthly coincident indicators, we can not only identify business cycle phases from 1992 to 2011, but also extract a new coincident index to describe China's economic conditions. Furthermore, based on the real time data set we collected, this paper examines the reliability and timeliness of this model in identifying business cycle turning points and thus verifies its applicability for China.
出处
《经济研究》
CSSCI
北大核心
2013年第6期58-70,共13页
Economic Research Journal
基金
国家自然科学基金项目(71001087
11101341)
福建省自然科学基金项目(2010J01361)
中央高校基本科研业务费专项基金
厦门大学基础创新科研基金(201222G008)
厦门大学博士研究生学术新人奖和厦门大学优秀博士培养计划资助
关键词
经济周期
混频数据
区制转移
动态因子模型
实时分析
Business Cycle
Mixed-frequency Data
Regime Switching
Dynamic Factor Model
Real Time Analysis