期刊文献+

多维度等级评分模型优化技术 被引量:1

Optimizations of Multi-Aspect Rating Inference Model
下载PDF
导出
摘要 研究了多维度等级评分模型的训练学习优化技术.为了解决不同用户之间的评分标注所存在的不一致性,提出两种简单、有效的模型训练优化技术,包括基于容忍度的样本选择方法和基于排序损失的样本选择方法.另外,为了充分利用不同特征的用户评分标注之间的相关性,提出了一个面向属性的协同过滤技术以改善多维度等级评分模型.在两个公开的英语和汉语真实餐馆评论数据集上进行实验验证,实验结果表明,所提出的方法有效地改善了等级评分的性能. This paper addresses an issue of training optimization of multi-aspect rating inference. First, to address the issue of author inconsistency rating annotation, this paper proposes two simple approaches to improving the standard rating inference models by optimizing sample selection for training, including tolerance-based selection and ranking-loss-based selection methods. Second, to explore correlations between ratings across a set of aspects, this paper presents an aspect-oriented collaborative filtering technique to improve rating inference models. Experiments on two publicly available English and Chinese restaurant review data sets have demonstrated significant improvements over standard algorithms.
出处 《软件学报》 EI CSCD 北大核心 2013年第7期1545-1556,共12页 Journal of Software
基金 国家自然科学基金(61073140 61100089) 高等学校博士学科点专项科研基金(20100042110031) 中央高校基本科研业务费专项资金(N110404012)
关键词 排序学习 有序回归模型 多维度等级评分模型 情感分析 协同过滤 learning to rank ordinal regression model multi-aspect rating inference model sentiment analysis collaborative filtering
  • 相关文献

参考文献1

二级参考文献39

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281.
  • 5S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions [A]. In: Proceedings of COLING-04, the Conference on Computational Linguistics (COLING-2004) [C]. Geneva, Switzerland: 2004, 1367-1373.
  • 6J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment Analyzer; Extracting Sentiments about a Given Topic using Natural Language Processing Techniques [A]. In: Proceedings of the 3rd IEEE International Conference on Dala Mining (ICDM-2003) [C]. Melbourne, Florida: Z003, 427-434.
  • 7M. Hu and B. Liu. Mining Opinion Features in Cus tomer Reviews [A]. In: Proceedings of Nineteeth Na tional Conference on Artificial Intellgience (AAAI 2004) [C]. San Jose, USA: 2004.
  • 8A. M. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews [A]. In: Proceedings of HI.T EMNLP-05, the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing [C]. Vancouver, Canada.. 2005, 339-346.
  • 9X. Cheng. Automatic Topic Term Detection and Sentiment Classification for Opinion Mining [D]. Master Thesis. Saarbr cken, Germany: The University of Saarland, 2007.
  • 10S. Bethard, H. Yu, A. Thornton, V. Hatzivassiloglou, and D. Jurafsky. Automatic Extraction of Opinion Propositions and their Holders [A]. In.. J. G.Shanahan et al. (eds). Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications [C]. Stanford, USA: 2004.

共引文献105

同被引文献16

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部