期刊文献+

TiC_(0.81)N_(0.48)和TiC_(0.61)N_(0.44)O_(0.15)涂层的热稳定性能 被引量:3

Thermal Stability of TiC_(0.81)N_(0.48) and TiC_(0.61)N_(0.44)O_(0.15) Coatings
原文传递
导出
摘要 用中温化学气相沉积工艺制备TiC0.81N0.48和TiC0.61N0.44O0.15涂层,用显微维氏硬度计测定TiCN和TiCNO涂层的硬度,用X射线衍射仪和激光拉曼光谱仪分析涂层的结构,研究了TiCN和TiCNO涂层在700℃真空退火后的组织结构转变对硬度的影响。结果表明:真空退火后TiC0.81N0.48和TiC0.61N0.44O0.15涂层的硬度先下降,然后趋于稳定。TiC0.81N0.48和TiC0.61N0.44O0.15涂层在700℃真空退火时,C原子从TiCN晶格析出后先形成sp3C;随着退火时间的延长,sp3C逐渐向sp2C转变;随后sp2C团簇增加,无序程度降低,TiCN逐渐分解为TiC和TiN相。硬度的降低,是由于涂层内缺陷密度的减少使应力释放,还与高温下TiC0.81N0.48和TiC0.61N0.44O0.15涂层组织结构的转变,特别是sp3C和sp2C的形成有关。与TiC0.61N0.44O0.15涂层相比,在700℃真空退火时TiC0.81N0.48涂层组织转变的进程加快,热稳定性能较差。 TiC0.81N0.48 andTiC0.61N0.44O0.15 coating deposited by medium temperature chemical va- por deposition, were characterized by Vickers hardness tester, X-ray diffraction (XRD) and confocal Ra- man spectrometer, and the effect of microstructure transformation on the hardness was investigated. Re- sults show that the hardness of TiC0.81N0.48 and TiC0.61N0.44O0.15 coatings declines after annealing at 700 ℃ in vacuum, and then tends to be stable. At the beginning of the annealing, some C atoms escape from the lattice of TiCN, resulting in the formation of sp^3C. As the annealing time prolongs, s^p3C transforms to sp^2C gradually. Thereafter the clustering of sp^2C increases, the disorder degree decreases, and TiCN de- composes into TiC and TiN. The decrease of hardness is related with the release of residual stress due to the defect annihilation. Besides, the microstructure transformation especially the formation of sp3C and sp2C decreases the hardness of coatings. Compared with TiC0.61N0.44O0.15, the microstructure transforma- tion takes places earlier in TiC0.81N0.48 coating, which exhibits worse thermal stability.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2013年第3期312-316,共5页 Chinese Journal of Materials Research
基金 美国肯纳公司资助项目~~
关键词 材料失效与保护 TiCN涂层 热稳定性 相转变 硬度 materials failure and protection, TiCN coatings, thermal stability, microstructure transforma-tion, hardness
  • 相关文献

参考文献13

  • 1T. Sadahiro, S. Yamaya, K. Shibuki, N. Ujiie, Wear resistant coating of cemented carbides and high speed steels by chemical vapour de- position, Wear, 48, 291 (1978).
  • 2S. Ruppi, A. Larsson, Deposition, microstructure, and properties of nanocrystalline Ti(C, O, N) coatings, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 21(1), 66(2003).
  • 3J. H. Hsieh, C. Li, W. Wu, A. L. K. Tan, Synthesis of Ti(C, N, O) coatings by unbalanced magnetron sputtering, Journal of Materials Processing Technology, 140(1-3), 662(2003).
  • 4Cacilda Moura, Luls Cunha, Jean Marie Chappr, Filipe Vaz, Study on the thermal stability of Ti(C, O, N) decorative coatings, Plasma Processes and Polymers, 6, s755(2009).
  • 5C. Olteanu, D. Munteanu, C. Ionescu, A. Munteanu, Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films, In- ternational Journal of Materials and Product Technology, 39, 186 (2010).
  • 6Czettl C, Mitterer C, Miihle U, Rafaja D, Puchner S, Hutter H, M. Penoy, C. Michotte, M. Kathrein, CO addition in low-pressure chemical vapour deposition of medium-temperature TiCxN1-x based hard coatings, Surface & Coatings Technology, 206, 1691(2011).
  • 7Y. H. Lu, Y. G. Shen, Effect of carbon content on thermal stability of Ti-Cx-Ny thin films, Journal of Materials Research, 23(3), 671 (2008).
  • 8L. Karlsson, A. H6rling, M.P. Johansson, L. Hultman, G. Ra- manath, The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxNl.x (x=0, 0.15 and 0.45) thin films, Acta Materialia, 50, 5103(2002).
  • 9J. M. Chapp6, F. Vaz, L. Cunha, C. Moura, Lucas de Marco MC, L. Irnhoff, S. Bourgeois, J. E Pierson, Development of dark Ti(C, O, N) coatings prepared by reactive sputtering, Surface and Coatings Technology, 203(5-7), 804(2008).
  • 10J. Wasyluk, T. S. Perova, D. W. M. Lau, M. B. Taylor, D. G. Mc- Culloeh, J. Stopford, Ultraviolet and visible Raman analysis of thin a-C films grown by filtered cathodic arc deposition, Diamond & Related Materials, 19, 514(2010).

二级参考文献19

  • 1田永生,陈传忠,王德云,雷廷权.气相沉积技术制备TiN类硬质膜[J].材料科学与工艺,2007,15(3):439-444. 被引量:8
  • 2HuangS W, Ng M W, Samandi M, et al. Tribological behaviour and microstructure of TiC^xN^(1-x) coatings deposited by filtered arc[J]. Wear, 2002, 252(7-8): 566-579.
  • 3Larsson A, Ruppi S. Microstructure and properties of Ti (C,N) coatings produced by moderate temperature chemical vapeur deposition[J]. Thin Solid Films, 2002, 402(1/2): 203-210.
  • 4Liu Zhijie, Leicht P, Liu Yixiong, et al. Effect of preheating temperature on the deposition rate of Ti (C,N)[J]. Surface and Coatings Technology, 2006, 201(6): 2818-2821.
  • 5Garcia J, Pitonak R, Weissenbacher R, et al. Production and characterization of wear resistant Ti(C,N) coatings manufactured by modified chemical vapor deposition process[J]. Surface and Coatings Technology, 2010, 205(7): 2322-2327.
  • 6Hsieh J H, Tan A L K, Zeng X T. Oxidation and wear behaviors of Ti-based thin films[J]. Surface and Coatings Technology, 2006, 201(7): 4094-4098.
  • 7Hsieh J H, Wu W, Li C, et al. Deposition and characterization ofTi(C,N,O) coatings by unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 2003, 163-164: 233-237.
  • 8Hsieh J H, Li C, Wu W, et al. Synthesis of Ti(C,N,O) coatings by unbalanced magnetron sputtering [J]. Journal of Materials Processing Technology, 2003, 140(1-3): 662 -667.
  • 9Ruppi S, Larsson A. Deposition, microstructure, and properties of nanocrystalline Ti(C,O,N) coatings[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21(1): 66-75.
  • 10Choy K L. Chemical vapour deposition of coatings [J]. Progress in Materials Science, 2003, 48(2): 57-170.

共引文献6

同被引文献61

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部