期刊文献+

微弱裂纹信号的稀疏编码提取 被引量:3

Extraction of weak crack signals by sparse code
下载PDF
导出
摘要 针对重大技术装备中关键基础部件早期裂纹信号提取困难这一问题,提出一种基于独立分量分析(ICA)的稀疏编码收缩(SCS)去噪方法,即采用泛化高斯模型(GGM)在ICA空间中估计信号独立系数的概率密度函数(PDF),并利用最大后验(MAP)估计方法进行非线性去噪的微弱信号提取方法。通过对不同信噪比的含噪微弱裂纹信号的提取研究,结果表明,此方法能提取出输入信噪比低于-27dB的微弱信号,且波形与频谱均能较好的和原信号保持一致。同时,其去噪效果远远好于小波降噪方法,是一种较好的微弱信号提取方法。 Aimed at the problem of hard extraction for early cracks in critical infrastructure components of major equipments, a sparse code shrinkage (SCS) denoising for weak signals based on independent component analysis (ICA) is proposed. Namely, the probability density function (PDF) of independent coefficients of the signal is estimated by the generalized Gaussian model (GGM) in the ICA space. And the nonlinear denoising is finished by maximum a posteriori (MAP) estimate. By extracting weak crack signals with differ- ent SNRs, the results show that this method can extract the signals with SNR less than --27dB. And the waveform and spectrum of the extracted signal are substantially consistent with the original one. At the same time, the results are much better than those from the wavelet denoising method. The method is very suitable for weak signal extraction.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第3期311-317,共7页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51105045) 湖南省教育厅优秀青年项目(10B005)
关键词 微弱信号提取 故障诊断 稀疏编码 独立分量分析 泛化高斯模型 weak signal extraction fault diagnosis sparse code independent component analysis (ICA) generalized Gaussianmodel (GGM)
  • 相关文献

参考文献12

  • 1崔玲丽,高立新,蔡力钢,张建宇,胥永刚.基于循环平稳解调的齿轮裂纹早期故障诊断研究[J].振动工程学报,2008,21(3):274-278. 被引量:13
  • 2Iyer D,Zouridakis G. Single-trial evoked potential esti- mation: Comparison between independent component analysis and wavelet denoising[J]. Clinical Neurophys- iology,2007,118 (3) :495-504.
  • 3Li Z, He Z,Zi Y,et al. Customized wavelet denoising using intra-and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration, 2008, 313(1-2):342 359.
  • 4Li W,Gu F,Ball A D,et al. A study of the noise from diesel engines using the independent component analy- sis [J]. Mechanical Systems and Signal Processing, 2010,15(6):1 165-1 184.
  • 5唐先广,郭瑜,丁彦春.基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J].振动与冲击,2011,30(10):45-49. 被引量:24
  • 6Hyvarinen A. Sparse code shrinkage: denoising of nongaussian data hy maximum likelihood estimation [J]. Neural Computation, 1999,11(7):1 739-1 768.
  • 7Ju L,Zhang C,Xin Z,et al. An approach of speech en- hancement by sparse code shrinkage[A]. International Conference on Neural Networks and Brain [C]. Bei- jing, China, 2005:1 952 1 956.
  • 8Xin Z,Jancovic P,Ju L, et al. Speech signal enhance ment based on MAP algorithm in the ICA space[J]. IEEE Transactions on Signal Processing, 2008,56 (5) 1 812-1 820.
  • 9Lee T W, Lewicki M S. The generalized gaussian mix- ture model using ICA[A]. Proceeding International workshop ICA[C]. Helsinki, Finland, 2000: 239- 244.
  • 10Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algo- rithm for mixed subgaussian and supergaussian sources [J]. Neural Computation, 1999,11(2) :409-433.

二级参考文献15

  • 1杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 2Huang NE.Shen Z,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proceeding of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1998,454:903-995.
  • 3Tang XG,Guo Y,Ding YC,Zheng HW.Application of Independent Component Analysis in Rolling Element Bearing[C],Proc of the 2010 MIMT,January 22-24,2010:74-78.
  • 4Yu Guo,Kok Kiong Tan.Order-crossing removal in Gabor order tracking by independent component analysis[J],Journal of Sound and Vibration,2009,325(1-2,7):471-488.
  • 5Yu Guo,Kok Kiong Tan.High efficient crossing-order decoupling in Vold-Kalman filtering order tracking based on independent component analysis[J],Mechanical Systems and Signal Processing,2010,24(6):1756-1766.
  • 6Hyvaerinen A.Independent Component Analysis [M].1999,10(3):626-634.
  • 7Hyvaerinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 8陈进.机械设备振动监测与故障诊断[M],上海:上海交通大学出版社,1997:98-102.
  • 9Brie D, Tomczak M, Oehlmann H. Gear crack detection by adaptive amplitude and phase demodulation[J]. Mechanical Systems and Signal Processing, 1997,11(1) :149-167.
  • 10LI Chong-sheng, QU Liang-sheng. A nonlinear diagnosis method of gear early fatigue crack[A]. 2005 IEEE International Conference on Vehicular Electronics and Safety Proceedings, Xi' an, IEEE Intelligent Transportation Systems Society[C]. 2005:134-139.

共引文献35

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部