期刊文献+

含水中基性大陆下地壳部分熔融能形成C型埃达克岩吗?——与张超等商榷 被引量:2

Can Partial Melting of the Hydrous Intermediate-Basic Lower Continental Crust Generate C-type Adakites?——Comment on Zhang et al. (2012)
下载PDF
导出
摘要 中基性(SiO2=50%~60%)成分源岩在中等压力(p=1.0~1.2GPa,相当于35~40km)下的失水部分熔融残留相中斜长石比例大,而石榴子石的比例不超过20%,与之平衡的中酸性熔体难以具备埃达克岩的地球化学特征。富钾源岩部分熔融体系中钾的地球化学行为不遵循稀溶液的Henry定律,基于强不相容假设的模拟计算很可能会过高估计熔体中的钾含量。 Dehydration melting of the intermediate-basic (SiO2=50%-60%) source undera pressure of 1.0-1.2 GPa (corresponding to 35-40 km depth) will generate high portion of plagioclase in the residuum, and the content of garnet in the residuum may not exceed 20% in most instances. Accordingly, the intermediate to acid melts, which are in equilibrium with such residuum, will not display the geochemical features of adakite. Meanwhile, the geochemical behavior of potassium in the partial melting system of K-rich sources does not obey the Henry's law of dilute solution, so the potassium content in the melt might be significantly overestimated by the calculation based on the assumption of the highly incompatible behaviour of potassium.
出处 《高校地质学报》 CAS CSCD 北大核心 2013年第2期373-380,共8页 Geological Journal of China Universities
基金 国家自然科学基金(41102122 40572128 40376013 40104003) 中央高校基本科研业务费专项资金(2010ZY23 2010ZD15)
关键词 C型埃达克岩 大陆下地壳 部分熔融 相平衡 C-type adakite lower continental crust partial mehing phase equilibrium
  • 相关文献

参考文献14

二级参考文献436

共引文献933

同被引文献24

  • 1ZHOU Wenge1, XIE Hongsen1, LIU Yonggang1, ZHENG Xiaogang1, ZHAO Zhidan2 & ZHOU Hui3 1. Laboratory of Material in the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China,2. Department of Geology, China University of Geosciences, Beijing 100083, China,3. Department of Geology, Peking University, Beijing 100871, China.Dehydration melting of solid amphibolite at 2.0 GPa: Effects of time and temperature[J].Science China Earth Sciences,2005,48(8):1120-1133. 被引量:17
  • 2周文戈,谢鸿森,刘永刚,郑小刚,赵志丹,周辉.2.0GPa块状斜长角闪岩部分熔融——时间和温度的影响[J].中国科学(D辑),2005,35(4):320-332. 被引量:12
  • 3Coldwell B, Clemens J and Petford N. 2011. Deep crustal melting in the Peruvian Andes: Felsic magma generation during delamination and uplift [J]. Lithos, 125: 272-286.
  • 4Gao S, Luo T C, Zhang B R, et al. 1998a. Chemical composition of the continental erust as revealed by studies in East China [J]. Geoehimiea Et Cosmoehimica Acta 62: 1959-1975.
  • 5Gao S, Zhang B R and Jin Z M. 1998b. How mafic is the lower continental crust [J]? Earth and Planetary Science Letters, 161: 101-117.
  • 6Leake B E, Woolley A R, Arps C E S, et al. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names [J]. American Mineralogist, 82: 1019-1037.
  • 7Skjerlie K P and Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins [J]. Journal of Petrology, 37: 661-691.
  • 8Springer W and Seek H. 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas [J]. Contributions to Mineralogy and Petrology, 127: 30-45.
  • 9Till C, Grove T and Withers A. 2012. The beginnings of hydrous mantle wedge melting [J]. Contributions to Mineralogy and Petrology,163: 669-688.
  • 10Wolf M and Wyllie P. 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time [J]. Contributions to Mineralogy and Petrology 115: 369-383.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部