期刊文献+

W波段四腔回旋速调管放大器(英文) 被引量:1

A W-band four-cavity gyroklystron amplifier
下载PDF
导出
摘要 介绍了W波段四腔回旋速调管放大器的设计.放大器工作在基膜TE01圆电模式,电子束工作电压70kV,工作电流6A,设计的双阳极磁控式注入电子枪,电子束纵横速度比1.5,速度零散小于4%.采用粒子模拟方法分析了各种参数对器件性能的影响.模拟结果显示,设计的放大器在电子束速度零散4%的情况下,增益35dB,带宽800MHz,输出功率100kW,效率为23.8%. The design of a W-band four-cavity gyroklystron amplifier is presented. The device operates in the fundamental harmonic TE01 circular electric mode. The 70 kV, 6 A beam is produced by a double anode magnetron injection gun (MIG) with an average perpendicular-to-parallel velocity ratio of 1.5 and a parallel velocity spread of less than 4%. Parti- cle-in-cell (PIC) simulations have been performed to predict general RF performance for various parameters. The simulated results show that the designed gyroklystron amplifier can produce about 35 dB gain, 800 MHz bandwidth and 100 kW peak output power with power conversion efficiency of 23.8% for a beam with 4% axial velocity spread.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第3期205-209,共5页 Journal of Infrared and Millimeter Waves
基金 Supported by the National Natural Science Fundation of China(60971072,61072024 and 61072026)
关键词 回旋速调管放大器 磁控式注入电子枪 粒子模拟 Gyroklystron amplifier magnetic injection gun (MIG) particle-in-cell( PIC ) simulation
  • 相关文献

参考文献1

二级参考文献6

  • 1徐长发 李红.偏微分方程数值解法[M].武汉:华中理工大学出版社,2000..
  • 2Birdsall K G; Langdon A B. Plasma physics via computer simulation[M]. New York: McGraw-Hill, Inc., 1985.
  • 3Goplen B, Ludeking L. User-configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87:54-86.
  • 4Stork C. Comparison of richardsons iteration with chebyshev acceleration factors to conjugate[EB/CD], http://sepwww.stanford.edu/oldmportsiscp57/57_29_abs.html, 2004-05.
  • 5Namiki T, A new FDTD algorithm based on alternating-direction implicit method[J], IEEE Trans, on Microwave Theory and Techniques, 1999, 47:2 003 - 2 007.
  • 6Zheng F, Chen Z, Zhang J. A finite-difference time-domain method without the Courant stability conditions[J]. IEEE Microwave Guided Wave Letters, 1999, 9: 441- 443.

共引文献15

同被引文献13

  • 1Hong K D, Brand G F, Idehara T A. 150-600GHz step-tunable gyrotron[J]. J Appl Phys, 1993, 74(8): 5250-5258.
  • 2Piosczyk B, Arnold A, Dammertz G, et al. Coaxial cavity gyrotron-recent experimental results[J]. IEEE Trans on Plasma Science, 2002, 30(3): 819-827.
  • 3Piosczyk B, Arnold A, Budig H, et al. A 2MW, CW coaxial cavity gyrotron. Experimental and technical conditions[C]. Proc. 5th Int. Workshop on Strong Microwaves in Plasmas, 2003, 1: 104-110.
  • 4Piosczyk B, Budig H, Dammertz G, et al. Coaxial cavity gyrotron-recent results and ongoing development work[C]. Conf Digest 28th Int Conf on Infrared and Millimeter Waves, 2003: 167-168.
  • 5Piosczyk B, Dammertz G, Dumbrajs O, et al. 165-GHz coaxial cavity gyrotron[J]. IEEE Trans on Plasma Science, 2004, 32(3): 853-860.
  • 6Chu K R. The electron cycltron maser[J]. Rev Modern Phy, 2004, 76(2): 489-540.
  • 7Herrmannsfeldt W B. Electron Trajectory Program[R]. SLAC-226,1979.
  • 8Kao S H, Chiu C C, Chu K R. A study of sub-terahertz and terahertz gyrotron oscillators[J]. Physics of Plasmas, 2012, 19(2): 023112.
  • 9Correa R A, Barroso J J. Space charge effects of gyrotron electron beams in coaxial cavities[J]. Int. J. Electron., 1993, 74(1): 131-136.
  • 10Fu W J, Yan Y, Yuan X S, et al. Two-beam magnetron injection guns for coaxial gyrotron with two electron beams[J]. Physics of Plasmas, 2009, 16(2): 023103.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部