期刊文献+

压缩感知重构算法在“鬼”成像中的应用研究 被引量:11

Application of compressed sensing in ghost imaging system
下载PDF
导出
摘要 "鬼"成像(GI)提供了一种用常规手段很难达到的特殊的获取图像方法,在量子光学领域是近些年来的前沿和热点之一。本文中,主要研究压缩感知(CS)的重构算法在"鬼"成像中的应用。我们使用具有高斯分布的热光源强度分布,来作为压缩感知的测量矩阵,分别以离散余弦变换(DCT)和离散小波变换(DWT)作为压缩感知中图像物体的稀疏矩阵,利用正交匹配追踪算法,最终获得基于压缩感知重构算法的"鬼"成像。研究结果表明,压缩比为0.5时,基于离散余弦变换基的压缩"鬼"成像(DCT-CS)和基于小波变换基的压缩"鬼"成像(DWT-CS),比"鬼"成像原始重建算法有超过10dB的峰值信噪比提升;同时,基于DCT-CS算法的重建质量要优于DWT-CS算法。 Ghost hnaging(GI) provides a special method to get an image, when it is difficult using conventional methods. Which has become one of the hot topics in quantum optics recently. In this paper, we discuss the application of Compressed Sensing (CS) in GI system. We utilize the intensity distribution of the thermal light distributed like Gaussian distribution as the measurement matrix of CS, select the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) as the sparse matrix of the image object, adopt the Orthogonal Matching Pursuit (OMP) algorithm as CS reconstruction algorithm, and obtain the reconstructed image. The result shows that the quality of GI with CS using DCT and DWT has enhanced to more than 10dB in Peak Signal-to-Noise Ratio(PSNR) to the result with original GI algorithm when the compression rate is 0.5. At the same time, the quality of DCT-CS algorithm has a little improvement to that of DWT-CS algorithm.
机构地区 南京邮电大学
出处 《信号处理》 CSCD 北大核心 2013年第6期677-683,共7页 Journal of Signal Processing
基金 国家自然科学基金(61271238) 中国高等教育博士学科点专项科研基金(20123223110003) 江苏省高校自然科学研究重大项目(11KJA510002) 固体微结构物理国家重点实验室开放课题(M25020,M25022)
关键词 压缩感知 “鬼”成像 离散余弦变换 离散小波变换 正交匹配追踪 Compressed sensing "Ghost" imaging Discrete cosine transform Discrete wavelet transform Orthogonalmatching pursuit
  • 相关文献

参考文献5

二级参考文献84

  • 1D. Donoho, "Compressed sensing", IEEE, Trans. on Information Theory J, 52(4) (2006) 1289-1306.
  • 2Y.T. saig and D. Donoho, "Extensions of compressed sensing", http:////www, star. stanford, edu/ donoho/Reports/2004/ExtCS-10-22-04, 2004.
  • 3E. Candes and T. Tao, "Near-optimal signal recovery from random projections and universal encoding strategies", available on the ArXiV preprint server: math. CA/ 0410542.
  • 4J. Tropp and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit", IEEE, Trans. Inform. Theory J, 53(12) (2007) 4655-4666.
  • 5E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements', Comm. Pure and Appl. Math. J, 59(2006)1207-1223.
  • 6S. Chen, D.L. Donoho, M.A. Saunders, "Atomic decomposition by basis pursuit", SIAM J. Sci. Comp, 20 (1)(1999) 33-61.
  • 7M. Andrecut, R. A. Este, S. A. Kauffman, "Competitive optimization of compressed sensing", Journal of Physics A: Mathematical and Theoretical, 40 (2007) :299-305.
  • 8Donoho, D.L. "For most large underdetermined systems of linear equations, the minimal L1 solution is also the sparsest solution". URL: http://wwwstat, stanford, edu/ -donoho/Reports/2007.
  • 9Donoho, D.L. "For most underdetermined systems of linear equations, the minimal l1 norm near-solution approxi- mates the sparsest near-solution". URL: http: //wwwstac stanford, edu/donoho/Reports/2007.
  • 10M. Elad, "Sparse representations are most likely to be the sparsest possible", EURASIP. J. Appl. Signal Process, 2006 (2006) ,pp: 1-12.

共引文献47

同被引文献67

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Ma Jianwei. Improved iterative eurvelet thresholding for compressed sensing and measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 ( 1 ) : 126- 136.
  • 3Yang Zai, Zhang Cishen, Deng Jun, et al. Orthonormal ex- pansion l-minimization algorithms for compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59 (12) :6285-6290.
  • 4Zhang Lei, Xing Mengdao, Qiu Chengwei, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing [J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (10) :3824-3838.
  • 5Yang Jungang, Thompson J, Huang Xiaotao, et al. Ran- dora-frequency SAR imaging based on compressed sensing [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2013, 51(2):983-994.
  • 6Fyhn K, Jensen T L, Larsen T, et al. Compressive sensing for spread spectrum receivers [J ]. IEEE Transactions on Wireless Communications, 2013, 12(5) :2334-2343.
  • 7Tropp J A, Gilbert A C. Signal recovery from random mea- surements via orthogonal matching pursuit [J]. IEEE Trans- actions on Information Theory, 2007, 53 (12):4655-4666.
  • 8Needell D, Vershynin R. Uniform uncertainty principleand signal recovery via regularized orthogonal matching pursuit [J ]. Foundations of Computational Mathematics, 2009, 9(3) :317-334.
  • 9Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit [J ]. IEEE Transactions on In- formation Theory, 2012, 58(2) : 1094-1121.
  • 10Dai Wei, Milenkovic O. Subspaee pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions of In- formation Theory, 2009, 55 (5) : 2230-2249.

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部