期刊文献+

多通道盲反卷积算法综述 被引量:4

A Review of Multichannel Blind Deconvolution Algorithm
下载PDF
导出
摘要 本文阐述了多通道盲反卷积(Multichannel Blind Deconvolution-MBD)的发展历程、基本模型及假设、数学原理以及通用求解过程,讨论了目前MBD几个研究方向的发展现状与面临的问题。在分析了MBD研究进展的基础上,从时域、频域、时频域、子空间、子带技术及其他算法六个方面分类综述和比较了MBD典型算法的特点与方法思路,说明了各类算法的优缺点以及主要问题。最后指出了目前多通道盲反卷积算法研究存在的不足,并提出了MBD未来理论和应用研究中可继续深入的开放课题。 The history, basic model, hypothesis, mathematical principle, and general solutions of multichannel blind deconvolution (MBD) are described in this review. One dimension signals such as voice, communication and radar signals under the condition of MBD are the main object of study. Then, the state of the art and the challenge problems in MBD research are discussed. On the basis of the latest process, the characteristic and methods of typical algorithms are summarized from the six aspects which are time domain, frequency domain, time-frequency domain, subspace, sub-band technology and other fields. The major defects, advantages and disadvantages of these algorithms are proposed. Finally, the existing problems on the research of MBD are generalized, and the open areas of theoretic and applied research about the noisy, underdetermined, nonlinear, non-stationary, and standardized problems in combination with MBD are brought forward.
出处 《信号处理》 CSCD 北大核心 2013年第6期712-722,共11页 Journal of Signal Processing
基金 国家自然科学基金(60901069)资助课题
关键词 卷积混叠 盲反卷积 多通道 convolutive mixtures blind deconvolution multichannel
  • 相关文献

参考文献77

  • 1A. Hyvarinen, J. Karhunen, E. Oja. Independent Compo- nent Anaysis[ M]. John Wiley&Sons, 2001.
  • 2S. Choi, A. Cichocki, H. M. Park and S. Y. Lee. Blind Source Separarion and Independent Component Analysis: A Review [ J ]. Neural Information Processing, 2005,6 (1) : 1-57.
  • 3P. Comon, C. Jutten. Handbook of Blind Source Separation Independent Component Analysis and Applications [ M 1. Elsevier, 2010.
  • 4Y. Sato. Two extensional applications of the zero-forcing equalization method [ J ]. IEEE Trans. Communication, 1975,1 (23) : 688-672.
  • 5S. Haykin. Blind Deconvolution[ M]. Prentice Hall, 1994.
  • 6P. Common. Constrasts for muhichannel blind deconvolu- tion [ J ]. Signal Processing Letters, 1996,3 (7) : 209 -211.
  • 7J. Bell, T. Sejnowski. An information-maximization ap- proach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7(6) : 1129-1159.
  • 8刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576. 被引量:63
  • 9C. Platt, F. Faggin. Networks for the separation of sources that are super imposed and delayed [ C ]. Advances In Neural Information Processing Systems. 1991 : 730-737.
  • 10D. Yellin, E. Wensten. Criteria for muhichannel signalseparation [ J ]. IEEE Trans Signal Process, 1994,42 (8) : 2158-2168.

二级参考文献87

  • 1姜卫东,陆佶人,张宏滔,高明生.基于相邻频点幅度相关的语音信号盲源分离[J].电路与系统学报,2005,10(3):1-4. 被引量:13
  • 2张雪峰,刘建强,冯大政.一种快速的频域盲语音分离系统[J].信号处理,2005,21(5):434-438. 被引量:5
  • 3廖桂生,保铮,王波.基于高阶累量的盲高分辨DOA估计及其性能分析[J].通信学报,1996,17(4):9-14. 被引量:6
  • 4凌燮亭.近场宽带信号源的盲分离[J].电子学报,1996,24(7):87-92. 被引量:5
  • 5谢志文,尹俊勋,饶丹.空间掩蔽效应的实验研究[J].声学学报,2006,31(4):363-369. 被引量:10
  • 6K. Matsuoka, "Minimal distortion principle for blind source separation," [ C] SICE 2002 ,Proceedings of the 41st SICE Annual conference, Aug. 2002, Vol. 4, pp. 2138-2143.
  • 7Asano F, Ikeda S, Ogawa M. Et al," Combined approach of array processing and independence component analysis for blind separation of acoustic signals", [ J ] IEEE Trans. Speech and Audio Processing, 2003, vol. 11, No. 5, pp. 204-215.
  • 8Muhammad Z. kram and Dennis R. Morgan,“Permutation inconsistency in blind speech separation:Investigation and solutions”, [ J ] IEEE Trans. speech and audio processing, 2005 ,Vol. 13 ,No. 1 ,pp. 1-13.
  • 9S. Kurita, H. Saruwatari, S. Kajita, et al, " Evaluation of blind signal separation method using directivity pattern under reverberant conditions" , [ C ] , Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2000, pp. 3140- 3143.
  • 10N. Murata, S. Ikeda and A. Ziehe," An approach to blind source separation based on temporal structure of speech signals," [ J ] Neurocomputing ,2001, Vol. 41 pp. 1-24.

共引文献132

同被引文献63

  • 1杨勇骥,汤莹,王慧娥,肖强,黄洁.利用激光共聚焦显微镜观察骨骼肌肌纤维中的钙火花现象[J].电子显微学报,2005,24(1):57-60. 被引量:3
  • 2凌燮亭.近场宽带信号源的盲分离[J].电子学报,1996,24(7):87-92. 被引量:5
  • 3万坚,李明,朱中梁.基于最大熵化法的卫星信号盲分离[J].电子与信息学报,2006,28(12):2256-2258. 被引量:2
  • 4Zhou M,Veen A J V D.Blind beamforming techniques for automatic identification system using GSVD and track- ing[C]// IEEE International Conference on Acoustic,Speech and Signal Processing(ICASSP),Florence,2014:3012-3016.
  • 5Bhotto M Z A,Ivan V B.Constant modulus Blind adap- tive beamforming based on unscented Kalman filtering [J].IEEE Signal Processing Letters,20.14,22(4):474-478.
  • 6Lee J H,Huang C C.Blind adaptive beamforming for cy- clostationary signals:a subspace projection approach[J].IEEE Antennas and Wireless Propagation Letters,2009,8(4):1406-1409.
  • 7Saruwatari H,Kawamura T,Nishikawa T,et al.Blind source separation based on a fast-convergence algorithm combining ICA and beamforming[J].IEEE Transactions on Audio,Speech,and Language Processing,2006,14(2):666-678.
  • 8Huang X Z,Wu H C,Jose C.Robust blind beamforming algorithm using joint multiple matrix diagonalization[J].IEEE Sensors Journal,2007,7(1):130-136.
  • 9NguyenThi H L,Jutten C.Blind source separation for con- volutive mixtures[J].Signal Processing,1995,45(2):209-229.
  • 10He Z S,Xie S L,Ding SX,et al.Convolutive blind source separation in the frequency domain based on sparse representation[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(5):1551-1563.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部